EXAM
System Validation
(192140122)
13:45 - 16:45
03-11-2014

This exam consists of 8 exercises.

The exercises are worth a total of 100 points.

The final grade for the course is (hw1+hw2)é2+emm/10, provided that you obtain at least 50

points for the exam (otherwise, the final grade for the course is a 4).

The exam is open book: all paper copies of slides, papers, notes etc. are allowed.

Exercise 1: Formal Tools and Techniques (10 points)

You are a consultant for a company that has problems with their software development. Clearly, more
rigorous development and some use of formal methods would improve the quality of their software.
However, during your first meeting, the boss has told you that he thinks all formal methods are
completely useless. How would you go ahead to convince him otherwise.

Describe your approach in at most 200 words.

Answer

Of course, there is not a single possible solution here. Important ingredients are in my opinion:

Exercise 2: Specification (10 points)

Write formal specifications for the following informal requirements in an appropriate specification
formalism of your choice. You may assume that appropriate atomic propositions, query methods
and classes exist.

a (3 points) When all safes are occupied, you have to wait until somebody empties his or her
safe.

b (3 points) A safe only can be opened if you know the correct code.
c (4 points) If the user of a safe changes, in between there has to be a moment when the safe
is free.
Answers

Many different formalisations can exist. Also in several cases, both temporal logic and a JML
specification would be an appropriate choice. (Thus answers that differ from the answers below
might still be correct.)

Exercise 3: Warehouse Modelling (15 points)

Consider a warehouse with 2 kinds of items (A and B), and a maximum total capacity M. All items
of type A and B have equal size.

a (6 points) Write an SMV model that models the warehouse system which accepts sell and
store requests. Both requests have the amount and the type of items to be sold or stored as
parameters. The behaviour of the system should account for the following:

e ltems of any kind can be only sold if there is enough items of this kind stored in the
warehouse. On successful sell the items are removed from the warehouse. Otherwise
nothing happens.

e Items of any kind can be only stored if there is enough space in the warehouse. On
successful store the items are added to the warehouse. Otherwise nothing happens.

You may use abbreviations, e.g., if a long formula occurs several times you may mark the first
occurrence with a name and then use this name for subsequent occurrences of the formula.

b (3 points) Specify that never more than M items are stored in the warehouse.
¢ (3 points) Specify that it is always possible to sell all items.

d (3 points) We wish to ensure that the model contains no runs in which the warehouse con-
tinuously tries to sell items or continuously tries to store items. Add some information to the
model that ensures this.

Answer

1 MODULE controller(request ,item,hamount,M)

2

3 VAR

4 a_count : 0..M;
b_count 0..M;

5
6
7 DEFINE
8
9

total := a_count+b_count:
10 ASSIGN
11 init(a-count):=0;

12 init(b_count):=0;
13 next(a-count):=case

14 item=a & request=sell & a_count>= amount : (a_count — amount);

15 item=a & request=store & total 4+ amount <M : (a_count + amount);
16 TRUE: a_count;

17 esac;

18 next(b_count):=case

19 item=b & request=sell & b_count>= amount : (b_count — amount);

20 item=b & request=store & total + amount <M : (b_count + amount);
21 TRUE: b_count;

22 esac;

23

24 MODULE main

25

26 DEFIN

27 M:= 7;

28

29 VAR

30 ctrl:controller(next(request),next(item),next(amount),M);
31 request:{store,sell};

32 amount:1..M;

33 item:{a,b};

34

35 DEFINE

3 total := ctrl.total;

37

33 — (B) never more than M items are stored in the warehouse.
39 LTLSPEC G (total <= M)

40

41— (C) it is always possible to sell all items.

42 CTLSPEC AG EF total =0

43

44 — (D) disregard sequences which contain only sells or only stores.

45 FAIRNESS request=store
46 FAIRNESS request=sell

Exercise 4: Software Model Checking (15 points)

Consider the "multiply by four” C program given below.

a (6 points) Write satabs annotations that reflect the following contract: Under the assumption
the IV is not negative, the function cannot return error (1) and upon termination y will contain
4 x N.

You do not need to copy the program to the answer sheet, if you write a line number followed
by text then it is understood that the text has to be inserted at that line number.

b (5 points) Construct the boolean program when abstraction is using just the predicate
PO: y ==4xN

c (4 points) Why will satabs fail to verify the annotated program successfully? What do you
need to do to give satabs a chance to finish the verification?

1 int nondet_int(); // random result

2 int N=nondet_int ();
3 int x=nondet_int();
4 int y=nondet_int ();
5
6 int main(){
7
8 x=0;
9
10 y=0;
1
12 while (x<N){
13
14 X++;
15
16 y=y+4;
17
18}
19
20 if (x > N) {
21
22 return 1; // ERROR
23}
24
25 return 0; // SUCCESS
26 }
Answers

The version of the code below contains all specifications asked for, plus a loop invariant in line
13. With this loop invariant the code will verify successfully. Without it, it will reach maximum
iterations without finding a solution.

1 int nondet_int(); // random result
2 int N=nondet_int();
3 int x=nondet_int ();
4 int y=nondet_int ();
5
6 int main(){
7 __.CPROVER_assume(N>=0);
8 x=0;
9
10 y=0;
11
12 while (x<N){
13 assert (y==4xx);
14 X+,
15
16 y=y+4;
17
18}
19
20 if (x > N) {
21 assert (0);
22 return 1; // ERROR
23 }
24 assert(y = 4xN);
25 return 0; // SUCCESS
26 }
The boolean program with just PO is:
1 bool PO=x;
2 void main(){
3 P0=PO;
4 PO=x;
5 while(*){
6 P0=PO;
7 PO=P07?false :x;
s}
9 if (%) {
10 PO0=PO0; return;
1}
12 P0=PO0; return;

=
w
——

1
2
3
4
5
6
7
8
9

Exercise 5: Abstraction (10 points)
Consider the classes Car and Bicycle and their specifications.

a (8 points) Write an interface Vehicle that abstracts these classes, i.e., both Car and Bicycle
should be able to implement Vehicle. Add specifications to Vehicle that abstractly specify
the common behaviour of Car and Bicycle.

b (2 points) Discuss how the specifications of Car and Bicycle have to be adapted.

class Car {
private int distance;
private int gaslnTank;

/*@ requires time >= 0;
ensures functioning() ? distance = \old(distance) + speed * time
distance = \old(distance);
*/
public void drive(int time, int speed) {
// implementation
}

//@ ensures \result = (gasInTank >= 0);
public boolean functioning() {

return gasinTank >= 0;
}

}

class Bicycle {
private int distance;
private boolean flatTire;

/*@ requires time >= 0;
ensures functioning() ? distance = \old(distance) + speed * time
distance = \old(distance);
«/
public void drive(int time, int speed) {
// implementation
}

//@ ensures \result = !flatTire;

public boolean functioning () {
return ! flatTire;

}

Answer

a interface Vehicle {

2

3 //@ model instance private int _distance;

4

5 //@ model private boolean _functioning;

6

7 /*@ requires time >= 0;

8 ensures functioning() ? _distance = \old(_distance) + speed % time
9 _distance = \old(_distance);
10 * /

11 public void drive(int time, int speed);

12

13 //@ ensures \result = _functioning;

14 public boolean functioning();

15 }

b Remove method specifications, add represents clauses.

1 class Car {

2

3 private int distance;

4

5 private int gasinTank;

6

7 //@ represents _distance <— distance;

8 //@ represents _functioning <— gasIlnTank >= 0;
9

10 public void drive(int time, int speed) {
11 // implementation

12 }

13

14 public boolean functioning() {

15 return gasinTank >= 0;

16 }

17 }

1 class AbsBicycle implements Vehicle {

2

3 private int distance;

4 private boolean flatTire;

5

6 //@ represents _distance <— distance;

7 //@ represents _functioning <— !flatTire
8

9 public void drive(int time, int speed) {
10 // implementation

11 }

12

13 public boolean functioning () {
14 return !flatTire:

15 }

16 }

Exercise 6: Run-time Checking (15 points)

Consider a stub implementation of an Iterator class below (assume it has a correct implementation
and that the Collection class is fully implemented and provides functionality that one would
normally expect). One of the desired security properties of the iterator is that the program always
checks for the availability of the element using the hasNext method before the actual element is
taken from the collection with next. The method hasNext can be called several times without an
intermediate call to next, but next cannot be called more than once without an intermediate call
to hasNext and it cannot be called at all if there are no elements left in the collection.

a (5 points) Add ghost specifications to the Iterator class that ensure the above properties.

b (2*5 points) Explain what exactly happens when the two test methods test1 and test2 are
executed with the Runtime Assertion Checker and the specifications you have provided.

1 public class Iterator {

2 public lterator(Collection c¢) {

3 // initialise the iterator based on c

4 }

5

6 public boolean hasNext() {

7 boolean result = ...; // check if there are elements left in c
8 return result;

o}

10

11 public Object next() {

12 return ...; // return the next element from c
13 }

14

15 public Object testl() {

16 Integer one = new Integer(1);

17 Iterator it = new Iterator(new Collection (

18 new Object[] {one, one, one, one}));

19 while (it .hasNext()) {

20 if(it.next() = one) { return it.next(); }
21

22 return null;

23 }

24

25 public Object test2() {

26 Collection ¢ = new Collection ();

27 for(int i = 1, i<=4; i++) c.add(new Integer(i));
28 Integer zero = new Integer (0);

29 while (it .hasNext()) {

30 if(it.next() = zero) { return it.next(); }
31 }

32 return null;

33 }
34 }

10

Answers
a
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23 }

public class lterator {

//@ public instance ghost asked;

//@ ensures !asked;

public lterator(Collection c) {
... // initialise the iterator based on c
//@ set asked = false;

}

//@ ensures asked <==> \result;

public boolean hasNext() {
boolean result = ...; // check if there are elements left in
//@ set asked = result;
return result;

}

//@ requires asked;
//@ ensures !asked;
public Object next() {
//@ set asked = false;
return ...; // return the next element from c

b Execution of method test2 will succeed without any RAC errors, because the zero element
looked for is not in the collection and hence the two (forbidden) subsequent calls to it.next ()
will never be executed. Method test1 will fail during the first iteration of the loop — the
collection contains only the one element, which will be immediately found and the body of
the if statement will call it.next () for the second time causing a failed requires asked;
precondition on method next.

11

Exercise 7: Static Checking (15 points)

a (5 points) Consider the array filtering method in the code below. The method copies non-
negative elements from array A to array B and negative elements to array C. It also calculates
the amount of the elements copied to arrays B and C in fields b and c. Provide loop annotations
(loop invariant and termination clause) for this loop. Make them as complete as possible. Also
provide the post condition that specifies the final outcome of this method. (There is no need
to copy the code in your answer sheet, give the specifications only.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19 }

(on

class FilterArray {

int[] A, B, C; // arrays
int b, c¢; // collected items in arrays B and C

void filterArray () {
b=20; c =0;
int a = 0;
while(a < A.length) {
if (Ala] >= 0) {
B[b] = Al[a]; b++;
telse{
Clc] = Ala]; c++;
}
a++;
}
}

(25 points) (Explain your answers, without explanation no points will be awarded).

Consider the Coordinate3D class below. Find two problems that the Extended Static Checker
will stumble on in this example:

public class Coordinate3D {

private /%@ spec_public ©@«/ int x, y, z;
//@ public invariant x * 3 +y *x 5 — z;

//@ assignable \everything;

void recomputeZ () {
z=x* 3 +y x b;

}

//@ assignable x, z;

void updateX(int n) {
X = X 4+ n;
recomputeZ ();

12

Answers

a The loop should be annotated in the following way:

1 class FilterArray {

2

3 int[] A, B, C; // arrays

4 int b, ¢; // collected items in arrays B and C

5

6 /+@ ensures b + ¢ = A.length;

7 ensures (\forall int i; i>=08&& i<b; B[i] >= 0 &&

8 (\exists int j; j>=08&& j<A.length; B[i] = A[j]));
9 ensures (\forall int i; i>=0&& i<c; C[i] < 0 &&

10 (\exists int j; j>=0&& j<A.length; C[i] = A[j])); ©x/
11 void filterArray () {

12 b=20;, c=0;

13 int a = 0;

14 /%@ loop_invariant a >= 0 && a <= A.length;

15 loop_invariant a = b + c;

16 loop_invariant (\forall int i; i>=08&& i<b; B[i] >= 0 &&
17 (\exists int j; j>=08&& j<a; B[i] = A[j]));

18 loop_invariant (\forall int i; i>=08&& i<c; C[i] < 0 &&
19 (\exists int j; j>=08&& j<a; C[i] = A[j]));

20 decreases A.length — a; ©x/

21 while(a < A.length) {

22 if (A[a] >= 0) {

23 B[b] = Ala]; b++;

24 }else{

25 Clc] = Ala]; c++;

26 }

27 a++;

28 }

29 }

30

31}

b The first problem is that in method updateX the invariant is going to be violated when the
method recomputeZ is called — its precondition that includes checking of the invariant is not
satisfied when x is temporarily increased by n. The second problem is the assignable clause
of recomputeZ that is too general and will not allow ESC to assume that x and y are not
changed which is necessary to prove the updateX method correct.

13

Exercise 8: Test Generation with JML (10 points)

Below you find a simple implementation of a no-overdraw bank account with integer balance and a
debit operation.

a (2 points) The class needs one invariant to be maintained for this kind of account, specify it.

b (5 points) Provide one complete specification case for the normal execution of the debit
method, that is, when everything goes fine and the balance is debited without any excep-
tions being thrown. Specify preconditions and changes to the state suitable for generating a
meaningful test case for this usage scenario.

¢ (3 points) For the complete testing, including all the exceptional cases, of the method debit
there would be more specification cases needed. How many exactly for this method and why?
Provide at least one set of test data for each of these specification cases.

1 public final class AccountBalance {

2

3 private int balance;

4

5 public void debit(int amount){

6 if (amount <= 0) throw new IllegalArgumentException ();

7 if(this.balance — amount < 0) throw new NegativeBalanceException ();
8 this.balance —= amount;

9 }

10

1}

14

Answer

1 public final class AccountBalance {

2

3 private /%@ spec_public @«/ int balance;

4 //@ public invariant balance >= 0;

5

6 /*@ public normal_behavior

7 requires amount > 0;

8 requires this.balance — amount >= 0;

9 ensures this.balance = \old(this.balance) — amount;
10 ©x/

11 public void debit(int amount){

12 if (amount <= 0) throw new IllegalArgumentException ();

13 if(this.balance — amount < 0) throw new NegativeBalanceException ();
14 this.balance —= amount;

15 }

16

17}

There shall be 3 specification cases all together due to the three different execution branches
that the code can take (two exceptional and one normal execution branch). The corresponding
example test data would be:

this.balance ‘ amount ‘

10 —10
0 10
20 10

15

