EXAM
System Validation
(192140122)
8:45-12:15
24-06-2011

e The exercises are worth a total of 10 points.

The final grade for the exam is Z2. The final grade for the course is (hw1+hw2)/2+emm,

provided that the grade for the exam is at least 5.0 (otherwise, the final grade is a 4)

e The exam is open book: all paper copies of slides, papers, notes etc. are allowed.

Exercise 1: Formal Tools and Techniques (15 points)

Suppose you are advising on the software development for a modern pigsty control system. The
pigsty has movable cage walls, so that depending on the total number of pigs, the pigs can be
optimally distributed.

A formal model has been build, describing the intended behaviour of the implementation. Several
properties have been verified for this model, e.g.,

e moving of cage walls will always ensure enough space for the pigs (avoiding in particular that
a pig will be killed by a moving cage wall);

e there are never more than 5 pigs together in a cage (unless the total number of pigs exceeds 5
times the maximum number of cages that can be build, if there are more than 5 pigs together
in a cage, they might start killing each other);

e the total of pigs is distributed relatively equally over the cages; and

e if no new pigs come in, or go out, the state of the cage walls does not change.

You are asked to give advice on how to move from this formal model to a reliable implementation.
How can the desired properties be mapped into properties for the software? How can it be ensured
that the implementation has the same behaviour as the formal model?

Give a short description (no more than 200-250 words) how you would approach this problem.

Answer

Of course, there is not a single possible solution here. Important ingredients are:

e the high-level temporal properties should be encoded into properties about the code (as we
did for the security automata in the course).

e JPF might be usable to check some of the properties automatically, e.g., properties satisfied
by a stable configuration

e for many properties, run-time checking is probably sufficient, because consequences if some-
thing goes wrong are not that severe.

e the requirement that pigs do not get killed by moving cage walls, and there are never more
than 5 pigs together in a cage is more important, because dead pigs should be avoided. Static
checking might be more appropriate here.

Exercise 2: Specification (18 points)

Write formal specifications for the following properties of a traffic light system in an appropriate
specification formalism of your choice (3 points per item). You may assume that appropriate atomic
propositions, query methods and classes exist.

a For a traffic light control system:
Whenever a light is red, it will eventually turn green.

b For a traffic light control system:
At most one light is green.

¢ For a traffic light control system:
The lights follow the sequence red — green — yellow — red — ...

d For an implementation of a game of checkers:
White has won the game if no black stones are left on the field. (N.B. a checkers board is 8
x 8.)

e For a water tank control system, assume that we have two tanks 77 and 75, each 500 cen-
timetres high, and that water can be transferred between the two tanks:
A water tank never overflows, if there is still place in the other tank.

f For the same water tank control system:
The amount of water in the two tanks is balanced, i.e., there is never more than 10 centimetres
difference in the height of the water levels.

Answers

Many different formalisations can exist. Also in several cases, both temporal logic and a JML
invariant would be an appropriate choice. (Thus answers that differ from the answers below might
still be correct.)

a G(Red — F Green)

b //@ invariant (\forall Light 11; 11.isGreen()) ==>
(\forall Light 12; 11 == 12 || 12.isRed()));

c Expressed by a series of constraints in the class Light:
//@ constraint \old(isGreen()) ==> isGreen() || isOrange();
//@ constraint \old(isOrange()) ==> isOrange || isRed();
//@ constraint \old(isRed()) ==> isRed || isGreen();

d //@ invariant white won <==
(\forall int i,j; O <=1 && i < 8 && 0 <= j & j < 8;
board[i] [j] == Empty || board[il[j] == White);

e G(_' (OVGI’ﬂOWZ’ A fu||i_|.1))

f //@ invariant Math.abs(T1.waterheight(), T2.waterheight()) <= 10;
(assuming that waterheight returns the waterlevel height in centimetres).

Exercise 3: Abstraction (7 points)

Consider the class ManipulateX below; it contains a few methods to manipulate the variable x. For
a static analysis, you want to give an abstract specification of it, where instead of specifying the
operations in terms of the concrete value of x, you only care whether x is even or not. Rewrite the
specification in this abstract way, by declaring a

//@ public model boolean isEvenX;.

Hint: Evenness of x can be tested using (x % 2) == 0. All logical operators, including the
exclusive or (~ in Java), are allowed.

1 public class ManipulateX {

2
3 /%@ spec_public %/ private int x;
4
5 /%@ requires dx >= 0;
6 ensures x = \old(x) + dx;
7 * /
8 public void moveX(int dx) {
9 X = x + dx;
10 }
11
12 /*@ ensures x == \old(x) % 2;
13 * /
14 public void doubleX () {
15 X = 2 % X;
16 }
17
18 }
Answer
1 public class ManipulateX {
2
3 /*@ spec_public */ private int x;
4
5 //@ public model boolean isEvenX;
6
7 //@ represents isEvenX <— (x % 2) = 0;
8
9 /%@ requires dx >= 0;
10 ensures isEvenX = (\old(isEvenX) * (dx % 2) = 1);
11 * /
12 public void moveX(int dx) {
13 X = x + dx;
14 }
15
16 /*@ ensures isEvenX;
17 * /

18 public void doubleX() {

19 X = 2 % X;

20 //@ assert (x % 2) = 0;
21 }

22

23 }

Unfortunately, it does not pass ESC/Java; | guess modulo calculations are too complex.

Exercise 4: Run-time Checking (15 points)

Each subquestion is worth 3 points. Explain your answers.

a Consider class Pin in Figure 1. What will happen when the run-time checker executes the
main method of this class? Explain why.

1 package exercises;

2

3 public class Pin {

© 0 N o g »

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/*@

private /%@ spec_public *x/ byte pin[]=new byte[8];

/*@
// pin is defined
invariant pin != null;

// the pin only contain digits (between 0 and 9)
invariant (\forall int i; 0 <= i && i < pin.length;
0 <= pin[i] && pin[i] <= 9);

/

ensures (\forall int i; 0 <= i && i < pin.length; pin[i] = 0);
signals (Exception) false;

/

public Pin(){
for(int i=0;i<=8;i++) this.pin[i]=0;
}

public static void main(String[] args) {
Pin r = new Pin();
}

Figure 1: Class Pin

1 package exercises;

2

3 public class Game {

4

5 //@ ghost public int state = UNINIT;

6 //@ ghost public static final int UNINIT = 1;
7 //@ ghost public static final int IN.PROGRESS = 2;
8 //@ ghost public static final int FINISHED = 3;
9

10 //@ constraint \old(state) = UNINIT = state =— IN_PROGRESS;
11 //@ constraint \old(state) = IN_PROGRESS ==> state = FINISHED;
12

13 //@ ensures state =— IN_PROGRESS;

14 public Game() {

15 //@ set state = IN.PROGRESS;

16 }

17

18 //@ requires state = IN_PROGRESS;

19 public void makeMove() {

20

21 }

22

23 //@ requires state =— IN_PROGRESS;

24 public void makeFinalMove () {

25 //@ set state = FINISHED;

26 }

27

28 public static void main (String [] args) {

29 Game g = new Game();

30 g.makeFinalMove ();

31 System.out. println(”"you have won!");

32 }

33 }

b Consider class Game in Figure 2. What will happen when the run-time checker executes the

main method of this class? Explain why.

Figure 2: Class Game

c Consider class Append in Figure 3. Method append does not respect its specification. Explain
which part of the specification is not respected, and explain how the JML run-time checker
can be used to demonstrate this.

1 package exercises;

2

3 public class Append {

4

5 /*@ spec_public %/ private Object[] a = new Object[16];

6

7 /*@ requires a != null;

8 requires o != null;

9 requires (\exists int i; 0<= i && i <= a.length;

10 (\forall int j; 0<=j && j < i; a[j] !'= null) &&
11 (\forall int k; i <= k & k < a.length; a[k] = null));
12 ensures (\exists int i; 0 <= i & & i < a.length;

13 (\forall int j; 0<=j && j < i;

14 alj] '= null && a[j] = \old(a[j])) &&
15 o.equals(afi]) &&

16 (\forall int k; i < k & k < a.length; a[k] = null));
17 ensures \old(a.length) <= a.length;

18 signals (Exception) false;

19 * /

20 public void append(Object 0){

21 int i;

22 for(i=0;i<a.length;i++){

23 if (a[i]==null) break;

24 }

25 Object[] temp = a;

26 if (i>a.length) {

27 a=new Object[a.length x2];

28 for(int k=0;k<temp.length ;k++){

29 a[k]=temp[k];

30 }

31 };

32 ali]=o;

33 }

34

35

36 }

Figure 3: Class Append

d Consider class Hotel in Figure 4 (on the next page). What will happen when the run-time
checker executes the main method of this class? Explain why.

1 public class Hotel {

2 /*@ spec_public %/ private int nr_of_rooms;

3 /*Q@ spec_public %/ private String [| reservations;
4 /*@ spec_public %/ private String [] rooms;

5 //@ invariant rooms != null;

6 //@ invariant reservations != null;

7

8 //@ requires nr >= 0;

9 public Hotel (int nr) {

10 nr_of_rooms = nr;

11 reservations = new String [nr_of_rooms];

12 rooms = new String [nr_of_rooms]; }

13

14 public void removeReservation (String name) {

15 for (int i = 0; i < nr_of_rooms; i++) {

16 if (name.equals(reservations[i])) {

17 reservations[i] = null; }}}

18

19

20 //@ requires name != null;

21 public void addReservation(String name) {

22 for (int i = 0; i < nr_of_rooms; i++) {

23 if (reservations[i] = null) {

24 reservations[i] = name;

25 return; }}}

26

27 /%@ requires name != null;

28 requires 0 <= nr && nr < nr_of_rooms;

29 ensures name.equals(rooms[nr]);

30 ensures (\forall int i; 0 <= i & & i < nr_of_rooms && i != nr;
31 rooms[i] = \old(rooms[i]));
32 ensures !(\ exists int i; 0 <= i & & i < nr_of_rooms;
33 name.equals(reservations[i]));
34 * /

35 public void checkln (String name, int nr) {

36 rooms[nr] = name;

37 removeReservation (name); }

38

39 public static void main (String [] args) {

40 Hotel h = new Hotel (5)

41 h.addReservation("A");

42 h.addReservatlon(” ")

43 h.checkIn("C", 3);

44 h.checkln(”A” 2); }

45 }

Figure 4: Class Hotel

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32 }

e Consider class Computations in Figure 5. What will happen when the run-time checker
executes the main method of this class? Explain why.

package exercises;

public class Computations {

/%@ spec_public %/ private int v;
//@ invariant v >= 0;

//@ requires x >= 0;
Computations(int x) {
X

} —

void square () {
Voo

} -

void squaredDistance(int u) {

\

V=V —u;
square ();

}

int getV() {
return v;

}

public static void main (String [] args) {
Computations ¢ = new Computations(2);
c.square();
c.squaredDistance (5);
System.out. println(c.getV());

Figure 5: Class Computations

10

Answers

a

©O© 00 N o O b W N -

[y
o

A JMLInternalExceptionalPostconditionError will be returned. The method ends with an
ArrayIndexOutOfBoundsException and the method specification says signals false;,
i.e., the method should not terminate exceptionally.

The run-time checker will not give any warnings, because the methods that are executed
(the constructor and makeFinalMove) respect the specifications of the class - including the
constraint.

The exceptional postcondition is violated. The following main method would make the run-
time checker give a message about this, i.e., return a JMLInternalExceptionalPostcondition-
Error.

public static void main (String[] args) {
Append r = new Append();
Object o = new Object();
for (int i = 0; i < 16; i++) {
r.append(o);
}

Object 02 = new Object ();
r.append(02);

Nothing will go wrong, because no method specification is violated during the execution.

The call to square from within squaredDistance will throw a JMLInvariantError, because
the invariant that v should be positive is violated by the assignment v = v - u (where v is
4 and u is 5).

11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Exercise 5: Static Checking (15 points)

Each subquestion is worth 3 points. Explain your answers.

a Consider again class Game in Figure 2 (used in exercise 4b). Explain what happens when the
static checker is applied to this class.

b Consider again class Hotel in Figure 4 (used in exercise 4d). Explain how the class should
be adapted so that the static checker does not signal any errors in the class. Why are these
changes necessary?

¢ Consider class Point in Figure 6. What will happen when the static checker is applied to this
class? Explain why.

package exercises;
public class Point {

/%@ spec_public %/ private int x;
/*@ spec_public */ private int vy;

/*Q@ assignable x,y;

ensures x = \old(x) + dx;
*/
void moveX(int dx) {
X = x + dx;

}

/*@ assignable x, y;

ensures y = \old(y) + dy;
*/
void moveY(int dy) {

y =y + dy;
}

/*@ assignable x, y;

ensures x = \old(x) + dx;
ensures y = \old(y) + dy;
*/
void move(int dx, int dy) {
moveX (dx);
moveY (dy);
}

}

Figure 6: Class Point

12

d Consider class Car in Figure 7. What will happen when the static checker is applied to this
class? Explain why.

1 package exercises;

2

3 public class Car {

4

5 /%@ spec_public %/ private int speed;

6 /*@ spec_public %/ private int trip_counter;

7 /%@ spec_public %/ private int km_counter;

8

9 //@ invariant 0 <= speed && speed <= 200;

10 //@ invariant 0 <= trip_counter && trip_counter < 1000;
11 //@ invariant 0 <= km_counter && km_counter < 1000000;
12

13 public Car () {

14 speed = 0;

15 trip_counter = 0;

16 km_counter = 0;

17 }

18

19 public void resetTripCounter () {

20 trip_counter = 0;

21 }

22

23 public void makeTrip(int distance) {

24 trip_counter = trip_counter + distance;
25 km_counter = km_counter + distance;

26 }

27 }

Figure 7: Class Car

13

e Consider class Insert in Figure 8. What would bean appropriate loop invariant to make this
method pass verification with the static checker (using the ESC/Java loopsafe option).

1 package exercises;

2

3 public class Insert {

4

5 /*@ spec_public %/ private int[] a;

6

7 // a is sorted

8 //@ invariant a != null;

9 //@ invariant (\forall int i; 0<= i & & i < a.length — 1;
10 //@ ali] <= ali + 1]);

1

12 //@ requires a != null;

13 //@ requires (\forall int i; 0<= i && i < a.length — 1;
14 //@ ali] <= ali + 1]);

15 Insert(int [] a) {

16 this.a = a;

17 }

18

19 /*@

20 ensures a[\result] = elem;

21 * /

22 public int insert (int elem) {

23 int j = 0;

24 for (;j < a.length — 1 && a[j] < elem; j++) {};
25 al[j] = elem;

26 return j;

27 }

28

29 }

Figure 8: Class Insert

14

Answers

a

b

© 00 N o g b~ W N =

[y
o

e
2
3
4
5

The static checker checks for all methods whether they respect the specification. It finds that
makeMove violates the constraint, because it does not change the state of the game.

A specification for removeReservations has to be given, as shown below. This is necessary,
because the static checker verifies in a modular way, i.e., abstracting every method calls by its
specification.

//@ requires name != null;
//@ ensures !(\ exists int i; 0 <= i && i < nr_of_rooms;
//@ name. equals(reservations|[i]));
public void removeReservation (String name) {
for (int i = 0; i < nr_of_rooms; i++) {
if (name.equals(reservations|[i])) {
reservations|[i] = null;

}

It says that the postcondition of move is possibly not established. The assignable clause of
moveY specifies that x may be changed by this method, without actually specifying how, thus
verification of move - that uses only the specification of move - cannot guarantee anything
about the final value of x anymore.

Method makeTrip might violate the invariant of Car, because the method does not have a
precondition to constrain the possible values of the parameter distance - or alternatively, the
method implementation does not check that the counters get over their limit (and should be
reset to 0). Notice that both options would be okay individually; it does not make sense to
have them both.

//@ loop_invariant (\forall int i; 0<=i && i < a.length — 1;

//@ ali] <= al[i + 1]);

//@ loop_invariant (\forall int i; 0<=1i && i < j; a[i] < elem);
//@ loop_invariant 0 <= j && j <= a.length — 1;

//@ loop_invariant a != null;

15

leaf

rq gt

arbiter

rq gt rq gt

usrl usr2

Figure 9: The lock hierarchy

Exercise 6: Modeling (15 points)

In this exercise, we use a locking protocol for access to resources that is inspired by hardware.

The protocol works as follows:
Communication between a server and a client uses two variables: rq (ReQuest) and gt (GranT).
Initially both variables are false. When the client wants access to the resource, the client sets rq to
true. When the server sees the request and is able to acknowledge it, it will set gt to true. When
the client sees that gt has become true, it knows that it has access to the resource. If the client is
finished, it sets rq to false. When the server detects this, it will also set gt to false.

The client

e is not required to free the resource;
e may not set rq to false before the arbiter has set gt to true;
e may not set rq to true before the arbiter has set gt to false.

Figure 10 contains part of an SMV model that uses this protocol in a hierarchical way. There
are two users and there is a single protected resource accessed via the Leaf model. The two users
compete for access to this resource. To control this, an intermediate Arbiter is used. The Arbiter
receives requests from the two users and forwards these requests to the Leaf module. Both for the
receiving of the requests (from user to Arbiter) and for the forwarding of the request (from Arbiter
to Leaf), the protocol described above is used, see Fig.9).

When the Arbiter receives the grant from the Leaf module, it passes it on to one of the two
competing users, ensuring that at most one of the users at the same time has access. Thus the
following properties have to be respected by the Arbiter module:

LTLSPEC G (gt-1 — !lgt.2)
LTLSPEC G (gt.2 —> lgt.1)

The arbiter is biased towards the first user. That is, if the first user requests access and the
second did not yet request access at that moment, then access is eventually granted to the first user.

LTLSPEC G (('rq-2 & rq-1) —> F gt_1)

16

MODULE Leaf(request,grant)
ASSIGN
init(grant) :=
next(grant) :=

FALSE;
request;

MODULE User(request , grant)
VAR
state:{safe,enter,critical
ASSIGN
init(state) :=
next(state) :=
state=safe
state=enter & !grant
state=enter & grant
state=critical
state=leave & grant
state=leave & !grant
esac;

safe;
case

init(request) := FALSE;
next(request) := case
state=enter TRUE;
state=leave FALSE;
TRUE request ;
esac;
MODULE main
VAR
rq . boolean;
gt : boolean;
rq-1 : boolean;
gt_1 boolean;
rq_2 boolean;
gt_2 boolean;
nil Leaf(rqg,gt);
arb
usrl User(rq-1,gt-1);
usr2 User(rq-2,gt_2);

Figure 10: SMV code for a prioritized lock

, leave };

{safe ,enter};
enter;

critical;
{critical ,leave};
leave ;

safe;

Arbiter(rq,gt,rq-1,gt.1,rq-2,gt_2);

17

However, if the second user requests access then access is only guaranteed to be eventually
granted to the second user if the first user never requests access.

LTLSPEC G ((G !'rq-1 & rq_-2) — F gt_2)

a (10 points) Write an implementation of the Arbiter module.

b (5 points) The following formula does not hold in the model. Explain why.
LTLSPEC G (rq-1 — F gt_1)

Answer

a The Arbiter module:

MODULE Arbiter(rq,gt,rql,gtl, rq2,gt2)

ASSIGN
init(rq):=FALSE;
init(gtl):=FALSE;
init(gt2):=FALSE;
next(rq) := case
lgt & (rql | rq2) : TRUE;
gt & !rql & 'rq2 : FALSE;
TRUE : rq;
esac;
next(gtl) := case
rq & gt & rql & !gt2 : TRUE;
l'rql : FALSE;
TRUE : gtl ;
esac;
next(gt2) := case
rq & gt & !rql & rq2 : TRUE;
l'rq2 : FALSE;
TRUE : gt2;
esac;

b The formula expresses that if user 1 requests access then that access is eventually granted.
This fails because user 2 can request and be given access. Subsequently user 2 can keep this
access forever. If user 1 requests access after the access to user 2 has been granted then user
1 will never be granted access:

1— specification G (rq.1 — F gt_1) is false
2 — as demonstrated by the following execution sequence
3 Trace Description: LTL Counterexample

4 Trace Type: Counterexample

5 —> State: 1.1 <—

6 rq = FALSE

7 gt = FALSE

8 rq_1 = FALSE

9 gt_1 = FALSE

10 rq_2 = FALSE

11 gt_2 FALSE

12 usrl.state = safe

18

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

usr2.state = safe

—> State:

1.2 <—

usr2.state = enter

—> State:
rq_2 =
—> State:

1.3 <—
TRUE
1.4 <—

rq = TRUE

—> State:

1.5 <—

gt = TRUE
usrl.state = enter

—> State:
rq-1 =
gt 2 =

1.6 <—
TRUE
TRUE

— Loop starts here

—> State:

1.7 <

usr2.state = critical

—> State:

1.8 <—

19

Exercise 7: Traces (15 points)

Consider the following small Java program, that executes two threads.

1 class Point {

2 public double x,y;

3 Point(double x,double y){

4 this .x=x;

5 this.y=y;

6 }

7 public void shift(double dx,double dy){

8 X=x+dx ;

9 y=y+dy;

10 }

11 public double dist(Point p){

12 double xl1=x;

13 double x2=p.x;

14 double yl=y;

15 double y2=p.y;

16 return Math.sqrt (Math.pow(x1—x2,2)+Math.pow(yl—y2,2));
17 }

18 }

19

20 class MovingObject implements Runnable {

21 private Point source,h target,hcurrent;

22 private int steps;

23 private MovingObject peer;

24 private double dx,dy;

25

26 MovingObject (Point source,Point target,int steps){
27 this.source=source;

28 this.target=target;

29 this.steps=steps;

30 current=new Point(source.x,source.y);

31 dx=(target .x—source.x)/steps;

32 dy=(target.y—source.y)/steps;

33 }

34 public void keepAwayFrom(MovingObject peer){
35 this.peer=peer;

36

37 public double dist(Point p){

38 return current.dist(p);

39 }

40 public void run(){

41 for(int i=0;i<steps;i++){

42 current.shift (dx,dy);

43 assert peer.current.dist(current) > 1.1 ;
44 }

45 assert target.dist(current) < 0.001;

46 }

47 }

48

49 public class TwinObjects {

50 public static void main(String args[]){

51 MovingObject objl=new MovingObject(new Point(1,0),new Point(4,3),3);
52 MovingObject obj2=new MovingObject(new Point(0,1),new Point(3,4),3);

20

1

53 objl.keepAwayFrom(obj2

)
54 obj2 . keepAwayFrom(objl);
55 Thread t1 = new Thread(objl);
56 Thread t2 = new Thread(obj2);
57 tl.start ();
58 t2.start ();
59 try {
60 tl.join ();
61 t2.join ();
62 } catch (InterruptedException e) {};
63 }
64 }

To analyse this program, we have used JPF. The input for JPF was

class to verify
target = TwinObjects

where to find byte code and source
classpath=.
sourcepath=.

how to report errors
report.console. property_violation=error ,snapshot, trace

set heuristic
search.class = .search.heuristic.BFSHeuristic

The result was the following trace:

JavaPathfinder v6.0 - (C) RIACS/NASA Ames Research Center

system under test
application: TwinObjects.java

search started: 6/14/11 8:47 PM

error #1
gov.nasa. jpf.jvm.NoUncaughtExceptionsProperty
java.lang.AssertionError

at MovingObject.run(TwinObjects.java:43)

snapshot #1

thread index=0,name=main,status=WAITING,this=java.lang.Thread@0,target=null,priority=5,lockCount=0,suspendCount=0
waiting on: java.lang.Thread@14b
call stack:

at java.lang.Thread.join(Thread.java:-1)

at TwinObjects.main(TwinObjects.java:60)

thread index=1,name=Thread-0,status=RUNNING,this=java.lang.Thread@14b,target=MovingObject@140,priority=5,lockCount=0,suspenc
call stack:
at MovingObject.run(TwinObjects. java:43)

thread index=2,name=Thread-1,status=RUNNING,this=java.lang.Thread@15d,target=MovingObject@147,priority=5,lockCount=0,suspenc
call stack:

at Point.shift(TwinObjects.java:9)

at MovingObject.run(TwinObjects.java:42)

trace #1
transition #0 thread: O
gov.nasa. jpf.jvm.choice.ThreadChoiceFromSet[id="root",isCascaded:false,{>main}]

21

[2894 insn w/o sources]
TwinObjects.

[1 insn

TwinObjects.

[2 insn

TwinObjects.

[1 insn

TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

[1 insn

TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.
TwinObjects.

java:51
w/o sources]
java:20
w/o sources]
java:20
w/o sources]
java:51
java:3
w/o sources]
java:4
java:b
java:6
java:51
java:3
w/o sources]
java:4
java:b
java:6
java:51
java:26
w/o sources]
java:27
java:28
java:29
java:30
java:3
w/o sources]
java:4
java:b
java:6
java:30
java:31
java:32
java:33
java:b1
java:52
java:3
w/o sources]
java:4
java:b
java:6
java:52
java:3
w/o sources]
java:4
java:b
java:6
java:52
java:26
w/o sources]
java:27
java:28
java:29
java:30
java:3
w/o sources]
java:4
java:b
java:6
java:30
java:31
java:32
java:33
java:52
java:53
java:35
java:36
java:54
java:35

: MovingObject objl=new MovingObject(new Point(1,0),new Point(4,3),3);

class MovingObject implements Runnable {

class MovingObject implements Runnable {

: MovingObject objl=new MovingObject(new Point(1,0),new Point(4,3),3);
: Point(double x,double y){

: this.x=x;

: this.y=y;

:)

: MovingObject objl=new MovingObject(new Point(1,0),new Point(4,3),3);
: Point(double x,double y){

: this.x=x;

: this.y=y;

: 3

: MovingObject objl=new MovingObject(new Point(1,0),new Point(4,3),3);
: MovingObject(Point source,Point target,int steps){

: this.source=source;
: this.target=target;
: this.steps=steps;

current=new Point(source.x,source.y);

: Point(double x,double y){

: this.x=x;
: this.y=y;
:

current=new Point(source.x,source.y);

: dx=(target.x-source.x)/steps;

: dy=(target.y-source.y)/steps;

1}

: MovingObject objl=new MovingObject(new Point(1,0),new Point(4,3),3);
: MovingObject obj2=new MovingObject(new Point(0,1),new Point(3,4),3);
: Point(double x,double y){

: this.x=x;

: this.y=y;

: 3

: MovingObject obj2=new MovingObject(new Point(0,1),new Point(3,4),3);
: Point(double x,double y){

: this.x=x;

. this.y=y;

:)

: MovingObject obj2=new MovingObject(new Point(0,1),new Point(3,4),3);
: MovingObject(Point source,Point target,int steps){

: this.source=source;
: this.target=target;
: this.steps=steps;

current=new Point(source.x,source.y);

: Point(double x,double y){

: this.x=x;
. this.y=y;
:)

current=new Point(source.x,source.y);

: dx=(target.x-source.x)/steps;

: dy=(target.y-source.y)/steps;

1

: MovingObject obj2=new MovingObject(new Point(0,1),new Point(3,4),3);
: objl.keepAwayFrom(obj2);

: this.peer=peer;

1 3

: obj2.keepAwayFrom(obj1);

: this.peer=peer;

22

TwinObjects. java:36
TwinObjects. java:55

:)
: Thread t1 =

[190 insn w/o sources]

TwinObjects. java:55
TwinObjects. java:56

: Thread t1 =
: Thread t2 =

[143 insn w/o sources]

TwinObjects. java:56
TwinObjects. java:57

: Thread t2
: tl.start(Q);

[1 insn w/o sources]

new

Thread(obj1);

new Thread(obj1);
new Thread(obj2);

new

Thread(obj2) ;

gov.nasa. jpf.jvm.choice.ThreadChoiceFromSet[id="start",isCascaded:false,{main,>Thread-0}]

[2 insn w/o sources]

TwinObjects. java:58

: t2.start();

[1 insn w/o sources]

transition #1 thread: 0O

transition #2 thread: 2

gov.nasa. jpf.jvm.choice.ThreadChoiceFromSet [id="start",isCascaded:false,{main,Thread-0,>Thread-1}]
: for(int i=0;i<steps;i++){

TwinObjects. java:41

gov.nasa. jpf.jvm.choice
TwinObjects. java:41
TwinObjects. java:42

transition #3 thread: 2

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{main,Thread-0,>Thread-1}]
: for(int i=0;i<steps;i++){

current.shift(dx,dy);

gov.nasa. jpf.jvm.choice
TwinObjects. java:42

transition #4 thread: 2

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{main,Thread-0,>Thread-1}]

current.shift(dx,dy);

gov.nasa. jpf.jvm.choice
TwinObjects. java:42

transition #5 thread: 2

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{main,Thread-0,>Thread-1}]

current.shift(dx,dy);

gov.nasa. jpf.jvm.choice
TwinObjects. java:42
TwinObjects. java:8

transition #6 thread: 2

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{main,Thread-0,>Thread-1}]

current.shift(dx,dy);

: x=x+dx;

transition #7 thread: O

gov.nasa. jpf.jvm.choice.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{main,Thread-0,>Thread-1}]
[2 insn w/o sources]

TwinObjects. java:60

: t1.joinQ);

[1 insn w/o sources]

gov.nasa. jpf.jvm.choice
TwinObjects. java:41
TwinObjects. java:42
TwinObjects. java:8
TwinObjects. java:9
TwinObjects. java:10
TwinObjects. java:43

.ThreadChoic

transition #8 thread:

1

eFromSet [id="wait",isCascaded:false,{Thread-0,>Thread-1}]

: for(int i=0;i<steps;i++){

current.shift(dx,dy);

: x=x+dx;
P y=yHdy;
:)

: assert peer.current.dist(current) > 1.1 ;

gov.nasa. jpf.jvm.choice
TwinObjects. java:43
TwinObjects. java:12

transition #9 thread:

1

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{Thread-0,>Thread-1}]

: assert peer.current.dist(current) > 1.1 ;

: double x1=x;

gov.nasa.jpf.jvm.choice
TwinObjects. java:8

transition #10 thread: 2

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{Thread-0,>Thread-1}]
: x=x+dx;

gov.nasa.jpf.jvm.choice
TwinObjects. java:8
TwinObjects. java:9

transition #11 thread: 2

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{Thread-0,>Thread-1}]
: x=x+dx;
1 y=y+dy;

gov.nasa. jpf.jvm.choice
TwinObjects. java:12
TwinObjects. java:13
TwinObjects. java:14

transition #12 thread:

1

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{Thread-0,>Thread-1}]
: double x1=x;
: double x2=p.x;
: double yl=y;

gov.nasa. jpf.jvm.choice
TwinObjects. java:14
TwinObjects. java:15
TwinObjects. java:16

transition #13 thread:

1

.ThreadChoiceFromSet [id="sharedField",isCascaded:false,{Thread-0,>Thread-1}]
: double yl=y;
: double y2=p.y;
: return Math.sgrt(Math.pow(x1-x2,2)+Math.pow(y1-y2,2));

[1 insn w/o sources]

transition #14 thread:

1

gov.nasa. jpf.jvm.choice.ThreadChoiceFromSet [id="monitorEnter",isCascaded:false,{>Thread-0,Thread-1}]
[14 insn w/o sources]

TwinObjects. java:16

: return Math.sqrt(Math.pow(x1-x2,2)+Math.pow(y1l-y2,2));

23

[2 insn w/o sources]

TwinObjects.java:16 : return Math.sqrt(Math.pow(x1-x2,2)+Math.pow(yl-y2,2));
[2 insn w/o sources]

TwinObjects.java:16 : return Math.sqrt(Math.pow(x1-x2,2)+Math.pow(yl-y2,2));
[2 insn w/o sources]

TwinObjects. java:16 : return Math.sqrt(Math.pow(x1-x2,2)+Math.pow(yl-y2,2));

TwinObjects. java:43 : assert peer.current.dist(current) > 1.1 ;

[21 insn w/o sources]

results

error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty "java.lang.AssertionError at MovingObject.run(Twin...'

statistics
elapsed time: 0:00:01
states: new=427, visited=364, backtracked=790, end=2
search: maxDepth=15, constraints hit=0
choice generators: thread=360 (signal=0, lock=9, shared ref=256), data=0
heap: new=513, released=56, max 1live=355, gc-cycles=758
instructions: 17404
max memory: 81MB
loaded code: classes=83, methods=1167

search finished: 6/14/11 8:47 PM

Analyse the counter example and explain why the assertion was triggered.

When you describe the scenario, it is important to know which thread is running and precisely
what the first and/or last action of the running thread during its turn is. (E.g., thread 37 starts by
reading 7 from variable x and stops just before reading variable y.) The description of what a thread
does during its turn can and should be much less detailed.

Answer
0-1,7 The main thread starts threads 1 and 2 and blocks waiting for thread 1.
2-6 Thread 2 enters the first iteration and stops right before updating x.

8,9 Thread 1 runs through the first iteration and then calls distance; it stops just before getting
the value of x from thread 2.

10,11 Thread 2 writes x and stops before updating y.

12-14 Thread 1 gets the values of x and y from thread 2 and computes the distance between the
points, giving rise to an exception.
The exception happens because thread 1 is at (2, 1), while thread 2 is moving from (0, 1) to
(1,2), but due to the update order, Thread 1 thinks it is at (1, 1), which is too close.

24

