
Measurement Automation in MATLAB

1 Introduction

This document will guide you through the process of automating your measure-
ment setup with MATLAB. In the first section we will discuss how to setup
connections to the measurement equipment so we can start sending commands
and receive data from the measurement equipment. The second section dis-
cusses the general structure of the commands and how to use them. The third
section will discuss how we can generate a class that simplifies sending and
receiving data from the measurement equipment. Finally we will combine ev-
erything discussed into a measurement setup that measures the bode plot of an
opamp.

2 Making a connection

In this section two different connection methods are discussed, the Prologix
Ethernet to GPIB converter and VISA. They share many similarities, however
there are some differences in the initialization for both connections. First we
discuss how to connect to the Prologix controller, after which it is discussed how
to set up a visa connection.

2.1 Prologix GPIB

The Prologix Ethernet to GPIB converter is a custom GPIB-LAN controller
which allows control of GPIB measurement equipment over ethernet. The con-
troller has some extra configuration options which could make the communi-
cation easier. First it is discussed how to verify if a connection can be made
with the Prologix GPIB controller. Afterwards it is discussed how to configure
different settings of the Prologix controller. The full documentation for the Pro-
logix Ethernet controller can be found at http://prologix.biz/downloads/

PrologixGpibEthernetManual.pdf

2.1.1 Finding the correct IP address

In the Westzaal the Prologix Ethernet to GPIB converter is connected to a
separate Ethernet port. The first thing to verify is if the IP address range of
the controller and the network port match. If this is not the case the controller
cannot be accessed from MATLAB.

First we retrieve the IP address of the PC at the second Ethernet port. Open
the command promt (CMD) and run ipconfig. The results should be similar as
in figure 1.

1

http://prologix.biz/gpib-ethernet-controller.html
http://prologix.biz/downloads/PrologixGpibEthernetManual.pdf
http://prologix.biz/downloads/PrologixGpibEthernetManual.pdf


Figure 1: ipconfig results. The first ethernet adapter has a 130.89.XX.XX range,
which is the standard UT range. The second ethernet adapter has a 10.0.0.XX
range, which in the Westzaal is connected to the measurement equipment.

To find the IP address of the Prologix controller a tool called Netfinder is
made available. Netfinder can be found at http://prologix.biz/downloads/
netfinder.exe. It searches for all available Prologix Ethernet controllers and
lists them. It allows you to see the settings and also change the IP address of
the controller. The results are shown in figure 2.

Figure 2: The results of the Prologix netfinder tool. A single GPIB-Ethernet
controller was found at ip address 10.0.0.3

As long as the first parts match of the PC ip-address and the Prologix ip-
address, in this case 10.0.0.XX, everything is set to connect to the Prologix
controller. So, our PC has an ip address of 10.0.0.1 and the GPIB-Ethernet
controller has an address of 10.0.0.3, therefor the PC can access the GPIB-
Ethernet controller.

2.1.2 Common settings

Since the Prologix controller is not a standard GPIB controller it requires some
additional code to function. We will discuss the ’mode’, ’auto’, ’eoi’, ’read’ and

2

http://prologix.biz/downloads/netfinder.exe
http://prologix.biz/downloads/netfinder.exe


’addr’ here.
The mode of the Prologix controller sets the controller in either controller

mode (1) or device mode (0). Since we want to control the measurement equip-
ment we use the Prologix controller in controller mode. To set the Prologix in
controller mode send ’++mode 1’.

The auto settings is used to automatically read data after a write action is
performed. This could be useful when reading lots of data. However, since we
write almost as much as we read we disable automatic read. Send ’++auto 0’
to disable automatic read after write.

The eoi command enables or disables the automatic insertion of the EOI sig-
nal after the last character has been transferred over GPIB. Some measurement
equipment requires this in order to properly detect the end of the message. In
this case we will enable the eoi by sending ’++eoi 1’.

A read from the measurement equipment last until:

• EOI is detected

• A specific character is read

• timeout

In our case most measurement equipment uses the EOI signal to notify the
controller that no more data will be send. To configure the controller to read
until EOI is set send ’++read eoi’ to the Prologix controller.

The last thing is to set the addr. In this case addr is the GPIB address of the
measurement equipment. So to connect the Prologix controller to a machine on
GPIB port 22 send ’++addr 22’. There are many more configuration settings
available, so see the manual of the Prologix controller if you are interested.

2.2 VISA

There are many different connection standards in use for measurement equip-
ment, for example serial, usb, ethernet and GPIB. Luckily the VISA I/O API
is available to help us. VISA stands for Virtual Instrument Software Architec-
ture and is commonly used in industry for communication between computers
and measurement equipment. The VISA API takes care of the communication
between the computer and the measurement equipment, so we can focus on the
actual commands that have to be send instead of also having to implement the
connection specific communication protocol.

2.2.1 VISA connections

Before VISA can be used driver software have to be installed. In the case of the
PCs in the Westzaal the drivers from National Instruments are installed. The
drivers come with a tool called NI-Max which can be used to manage all your
VISA compatible devices.

From figure 3 we get the visa resource name which is:
TCPIP0::10.0.0.2::inst0::INSTR. We need this visa resource name later to
connect MATLAB to the oscilloscope. In this case the only visa compatible
devices are the oscilloscope connected to the ethernet connection and a serial
port COM1 with visa address ASRL1::INSTR. If we supply the visa API with an

3



Figure 3: NI-Max program. It shows the Settings for the Rohde& Schwarz
RTB2002 scope.

address it automatically determines what kind of connection is used, removing
the need for separate code for each type of connection.

If the scope is not visible in NI-max check the IP address of the scope. You
can open the ethernet settings of the scope by pressing the icon on the top right
(ethernet icon). Then select the cog next to the ip address that becomes visible.
This should open the Ethernet settings. Another possibility is to press Menu-
¿Setup-¿Interface-¿Ethernet. Then press the parameter button. The screen
shown in figure 4 should become visible. Make sure that the IP address settings
match the settings of the PC ethernet adapter.

2.3 Setting up a connection in MATLAB

For the Prologix GPIB and VISA interfaces communication is performed in a
similar way. The difference is in the interface used. VISA creates an abstract
interface, so only an address is required. For the Prologix GPIB controller a
separate TCP-IP connection has to be established.

To start the communication a object that contains information about the
connection has to be made. For the Prologix GPIB controller TCP-IP connec-
tion object is needed. To create a TCP-IP connection in MATLAB use the
TCP-IP function.

A useful command to reset all instrument connections is instrreset. If you
have an open connection but have removed all objects (clear) use this to reset
all open connections.

1 Create a connection object to the Prologix GPIB controller at ip-
address 10.0.0.X to port 1234 by using tcpip(’10.0.0.X’,1234). Save
the result to variable prologixAddress.

4



Figure 4: IP settings of the scope. First press the icon on the top right (ethernet
icon). Then select the cog next to the ip address that becomes visible. This
should open the Ethernet settings.

Now we have a object containing the tcp-ip connection information. The next
step is to open this connection. Only when the connection is open data can be
read and send.

2 Open the connection by using fopen(prologixAddress)

After opening the connection it is time to use it to write data to the Pro-
logix controller and also read some data. In almost all cases before data can be
read a command requesting the data has to be send. We are going to request
and read the version of the software of the Prologix controller. First write data
to the Prologix controller.

3a) Use fprintf(prologixAddress,’++ver’) to request the firmware ver-
sion of the prologix controller.
3b) Use version = fscanf(prologixAddress) to read the requested data
from the prologix controller.

If you get data back this means that you successfully established a connec-
tion to the Prologix controller. The next step is to connect to the function
generator and read its ID. Figure out what the GPIB address is of the function
generator. This can be found in the MENU, normally in a section called I/O.
This differs per scope.

4 Request the ID of the function generator by querying ’*IDN?’.
a) Set the mode of the Prologix controller to 1 (++mode 1)

5



b) Set auto to 0 (++auto 0)
c) Set EOI to 1 (++eoi 1)
d) Set read to stop at eoi (++read eoi)
c) Set the GPIB address to the correct address (++addr X)

The last step is to close the connection again. Directly closing the connec-
tion after it is established prevents you from losing track of which connections
are already open.

4 Close the connection with fclose(prologixAddress)

By now you should have successfully connected to the Prologix controller, read
its firmware version and closed the connection. Now try to also read the ID of the
oscilloscope through visa. The difference is that instead of creating the connec-
tion object with the tcpip function use the visa function. An example of the syn-
tax could be scopeAddress = visa(’ni’,’TCPIP0::10.0.0.2::inst0::INSTR’).
In the Westzaal the National Instruments visa drivers are installed, therefor the
first argument should be ’ni’. To request the ID of the scope send ’*IDN?’ and
then read the data.

5 Request the ID of the oscilloscope by using VISA.

6



3 SCPI Commands

There are many types of different measurement equipment and also many differ-
ent manufacturers of measurement equipment. To prevent every manufacturer
from designing its own standards most measurement equipment uses Standard
Commands for Programmable Instruments(SCPI). Most same types of mea-
surement equipment, e.g. signal generators, share a lot of the same commands,
therefor making it easier to replace the measurement equipment with a different
version.

3.1 Command structure

There are two types of SCPI commands, a set command and a query command.
The set and query command can easily be distinguishes of each other since a
query command always ends wit a question mark (?). This results in :FREQ X
being a set command to set the frequency to X and :FREQ? a request for the
current frequency value.

SCPI commands are structured as tree as shown in figure 5. A different level
in the hierarchy is denoted by a colon (:).

Figure 5: SCPI tree structure. In this way all commands are sorted,e.g. every-
thing that has to do with measure is sorted under :MEAS

The command syntax as shown in figure 5 shows some letters as capital
letters, while others are in lower case. It is only required to send the capital
letters so :FREQuency:CHANnels is the exact same command as :FREQ:CHAN.
Everything between square brackets can also be omitted.

7



4 Creating Objects in MATLAB

As discussed previously sending commands always requires you to open a con-
nection, send the data and close the connection. To make these steps easier,
we are going to write a class for the GPIB-Ethernet controller. This class will
contain 3 functions: a constructor, a sendData() and a queryData(). Matlab
already has templates available for generating classes. Press New → class to
generate the template. The basic template is shown in figure 6.

Figure 6: Standard class template from matlab. It can be generated by pressing
New → class.

In the properties section the class variables should be stored. The methods
section contains the methods of the class. We are going to edit this template
and create a class that handles data transfers for us. First we should pick a
name for our class; in this case we chose dataConnection.

1. Change the untitled in both the classdef and the first method
(the constructor) to dataConnection.

The dataConnection now has a single property, Property1. We need a prop-
erties to store the location where the data should be written to. It is best
practice to give the property a clear and unambiguous name. Since we want
to store the address for the data connection to read and write from we change
Property1 to address.

8



2. Change Property1 to address.

The constructor is called directly when a new class in instantiated. We can
require some input arguments from which we use during the initialization of the
class. In this case we require an address where the data has to be written to.

3. Change the input arguments for the constructor function to in-
clude the address.

Now that we have some input arguments it is time to store them as well. We
can now set the address property with the address input argument from the con-
structor. If you want to access properties of the object itself use obj.property
. See the example in the class Template how to do this.

4. Store the input argument address value into the class property
address. The variable can be accessed by obj.address .

Now that the constructor is done we can start writing the methods of the
class. In this case we want two methods: sendData(obj,data) and query-
Data(obj,command). The template class already contains a template for a
function that returns data, e.g. the queryData(obj,command) method. Ev-
ery method inside the class has as first input argument the obj, which refers to
the object itself. This allows the methods of the class to access its own proper-
ties.

5a) Give the method the correct name and change it arguments list
5b) Implement the queryData function
5c) Create the sendData() method and implement it

Now it is time to test if the class actually works. Create a new MATLAB
script and initialize a new dataConnection class. For example a new connection
to the scope could look like : scopeCon = dataConnection(’visaScope’). To
access the methods in the class use scopeCon.queryData().

6 Test the connection to the scope by querying *IDN?

9



5 Final Assignment: Measurements

Now we are all set to finally perform some measurements. To put everything
into practice we are going to measure the bode plot of the opamp circuit shown
in figure 7. Use your previously written code in this assignment.

Figure 7: Schematic of the opamp circuit to be characterized. Expected is a
gain of -10.

1) Build the circuit as shown in figure 7

Now that we have the circuit it is time to build the rest of the measurement
setup as shown in figure 8. Connect a bnc splitter to the signal generator and
connect one of the outputs to the OPAMP and the other one to CH1 of the
oscilloscope. Connect the output of the opamp to CH2 of the scope.

Signal
Generator

OPAMP

CH1

CH2

Oscilloscope

Figure 8: Schematic overview of the full measurement setup

2) Build the measurement setup as shown in figure 8

To measure the bode plot two things are required, the gain of the circuit and
the phase shift. We are interested in the phase shift between CH1 and CH2, so
we trigger the scope on CH1.

3) Send the SCPIs commands to the scope to trigger on the ris-
ing edge of CH1. Hint: Search the manual of the scope for the SCPI
command TRIGGER:

10



The next step is to instruct the scope to take some measurements. In this
case we are interested in the phase difference between CH1 and CH2 and the
ratio between the amplitudes of CH1 and CH2.

4) Send the SCPIs commands so the scope performs the measure-
ments. Hint: Search the manual of the scope for the SCPI command
MEASUREMENT:. You have to set the MAIN and the SOURCE

Now that the scope measures the phase and voltage amplitudes we should in-
struct it to send the data to us.

4) Query the measurement results. Hint: Search the manual of the
scope for the SCPI command MEASUREMENT< n >:Result.

The next step is to control the frequency of the signal generator. This will
allow us to change the frequency during a measurement.

5) Set the frequency of the generator by using MATLAB. Hint: use
:FREQ

At this point we have all the separate parts to do a fully automated measure-
ment: circuit,frequency control, phase of output signal and the amplitudes of
both the input and output signals. It is now time to write a loop that performs
the measurement and plots the bode plot.

6) Measure the bode plot of the opamp circuit and plot the results

If you sweep the input frequency it might be required to change the time
scale of the scope as well. To set the time scale use the following command
TIMEBASE:SCALE value. To guarantee that you always have the same number
of periods the value could be set to 1/f.

11


	Introduction
	Making a connection
	Prologix GPIB
	Finding the correct IP address
	Common settings

	VISA
	VISA connections

	Setting up a connection in MATLAB

	SCPI Commands
	Command structure

	Creating Objects in MATLAB
	Final Assignment: Measurements

