
4. Periodic signals 1

 59

Assignment 2 (Compulsory)

MATLAB, short for Matrix Laboratory, is a so-called 4th generation programming language.
These are programming languages that are designed with a specific application area in mind.
In case of MATLAB, the application area is mathematical analysis, data processing and data
visualizations. MATLAB allows:

 matrix manipulations
 plotting of functions and data
 implementation of algorithms
 creation of user interfaces
 interfacing with programs written in other languages, including C, C++, Java, and

Fortran.
 interfacing with instruments (instrument control and image acquisition)

Note: You can watch the tutorial videos: https://goo.gl/u8iBrm that will help you to get started
with MATLAB.

Some of the functionality is offered standard. Others are added optionally be means of
installed toolboxes. There are many toolboxes. Here are just a few examples:

Communications Toolbox Optimization Toolbox
Control System Toolbox Parallel Computing Toolbox
Curve Fitting Toolbox Partial Differential Equation Toolbox
Filter Design Toolbox Pattern Recognition Tools
Global Optimization Toolbox Robust Control Toolbox
Image Acquisition Toolbox Signal Processing Toolbox
Image Processing Toolbox Statistics Toolbox
Computer Vision Toolbox Symbolic Math Toolbox
Instrument Control Toolbox System Identification Toolbox
Neural Network Toolbox Wavelet Toolbox

The goal of this first assignment is twofold:

1. Getting acquainted with MATLAB and its operating structure
2. Knowing how to visualize data in graphs

Examples of visualization code can be found in Section 6 of the Lecture notes.
Want to know more? Visit:

http://www.mathworks.nl/help/matlab/getting-started-with-matlab.html.

Instructions for this assignment:
 Go through the exercises below to develop your MATLAB skills and understanding of

signals. The output will be an m-file with MATLAB code and a filled-out pdf form
accompanying this. To fill out the form: save the pdf form to file, answer the questions, save
it, upload it to Canvas.

 Use an Adobe pdf reader (don’t use a plug-in of a browser).
 Don’t forget to fill in your family name, student id, and email address on top of the pdf-

form.
 Copy your MATLAB code to the last page of the pdf form.
 Save your work and submit it on Canvas. Deadline: 20 September 17:30.
 The work must be done individually!

4. Periodic signals 1

 60

Part I: The first brush with MATLAB
When you start MATLAB, a special window called the MATLAB desktop appears. The
desktop is a window that contains sub-windows. For instance:

 The Command Window: for entering commands and executing functions
 The Command History: where previously run commands are logged
 The Workspace: where an overview of variables are shown
 The Editor: where new MATLAB code is created

See the files in the
current folder.
Double click an m-file
to open a MATLAB
script or function

Use the editor to create and run
new MATLAB commands
(scripts) and functions

Enter MATLAB
commands at the line
prompt

View or execute previously
commands from the command
history window

See which variables
are defined in the
workspace

Change
current
folder

Move Editor
outside desktop
(undock)

4. Periodic signals 1

 61

The Command Window allows you to use MATLAB as a calculator, as shown in the
figure above.

An expression, like:

is entered as (try this):

>> 1/(2+sin(pi/2)^2) + exp(-4/5)

which will produce something like:

ans =

 0.7827
>>

Using the editor
It is unusual to work with the command window as we did in the example. MATLAB code is
almost always stored and retrieved in so-called m-files. These m-files are created and
manipulated with the MATLAB editor. If you undock the Editor window, you get:

File handling Find and
replace text

Debug your
code using
breakpoints

Execute
your code

Dock or
undock the
editor

4
5

2 1
2

1

2 sin ()
e






4. Periodic signals 1

 62

When you run MATLAB the first time, the editor is often docked in the main window. You can
easily undock it with the small button on the right top corner.

Looking at the m-code given in the editor above:
A. The first line of the m-file is always a short explanation of what the m-file should do.
B. The fourth and fifth lines of the code, shown above, are not mandatory. They reset the state

of MATLAB. Each time when the code is executed, MATLAB has a well-defined starting
condition.

C. As you can see, the code is well structured into sections (in MATLAB jargon: cells). Each
cell is preceded by a line starting with %% followed by a short explanation what the cell is
supposed to do. For instance:
%% clear all and %% set parameters

D. Also, most lines (as a rule of thumb: more than 50%) are terminated with comment that
explains what the line is supposed to do. Comments start with %.

For readability of your code, these four points above are essential, and you must
always stick to these.

MATLAB coding: an example
MATLAB is able to execute mathematical expressions. As an example, we consider the
matrix-vector multiplication:

 y Hx (1)

where x is a N -dimensional vector, H is a M N dimensional matrix, and y a M -

dimensional vector. The multiplication is defined by:

 ,
1

1, ,
N

m m n n
n

y h x m M


   for (2)

A C-programmer might implement this as follows:
 for (m = 0; m < M; m++)
 { y[m] = 0;
 for (n = 0; n < N; n++)
 {
 y[m] = y[m] + h[m][n]*x[n];
 }
 }

A naïve MATLAB-programmer would translate this into the following MATLAB script:

y = zeros(M,1); % pre-allocate y array and fill
with zeros
for m=1:M % loop through elements of y
 for n=1:N % loop through elements of x
 y(m) = y(m) + H(m,n)*x(n); % perform the calculation
 end
end

A not-so-naïve MATLAB-programmer will do this:

y = H*x; % use matrix-vector multiplication

This last approach has several advantages above the naïve MATLAB implementation:
a) The readability of the code is much improved (see the alikeness with eq (1)).
b) It takes much less time to create the code, and the chance on mistakes is much smaller.
c) The code executes much faster

1. The default MATLAB working folder is %USERPROFILE\documents\matlab which

will be created to first time that you use MATLAB. So, start up MATLAB and see whether
this is really the case. Navigate with Windows Explorer (MacBook users: Finder) to this
folder. Create a sub-folder IEEE_Sign_Assigment2. To organize your work neatly:
unpack the zip-file Assignment2.zip and put all these files in the newly created sub-
folder. In MATLAB: navigate to this sub-folder. Open the file test_speed.m. This file

4. Periodic signals 1

 63

contains the code as shown on page 61. However, the last four lines are missing. Add these
missing lines to the code. Execute this script by pressing the Run button. In the command
window you see the results (in seconds) of the stopwatch.

2. Execute this script once again and see whether there is a difference in execution time.

Insert your results in the pdf form IndA2_form.pdf.

You might have observed the large difference between the executing times of the
naïve approach, and the not-naïve approach, especially in the second run. The reason
is that MATLAB is vector oriented. It is optimized to process vectorised data, i.e. data
arrays rather than scalars (single variables). In the naïve approach, MATLAB uses an
interpreter. In the second approach, an optimized pre-compiled code is used. The first
time that MATLAB’s interpreter encounters the statement, it has to load this code
once, but after that it is cached in memory and the second call runs even faster.

For efficiency of your code: always try to avoid for-loops, and try to vectorise the
processing.

There are many techniques to avoid for-loops. You will encounter some of them in the
sequel. For now, it suffices to get to know the colon operator. That is the operator ‘:’

3. a) In the command window, execute the following: D=1:6, and see what happens.

b) Execute: E = 0:.1:.5 and see what happens.
Fill in the form. You can find help about the colon operator by typing doc colon.

4. The colon operator is also useful to select columns or rows from 2D arrays. As an example,
execute the following code:

A = magic(5)
A(3,:)
A(:,3)

The function magic(5) produces a 5x5 array with some specific properties (that are not
relevant for now). Fill in the form.

You might also want to know what happens with the following constructions:

A(1:3,:)
A(1:2:3,:)
A(2:3,2:3)
A(:)
A(1:2:end)

Try this, and try to understand the logic behind this.

Part II: Plotting x-y data
In this part, you will learn the basics of visualization of data with MATLAB. The
most often used MATLAB function to create XY graphs is the function plot. To
demonstrate its usage, we first have to create data points along the horizontal x-axis
with associated data points along the vertical y-axis. As a simple example, execute the
following code in your command window:

x = 0:5;
y = [2,3,4,3,1,0];

Our purpose is to plot the y-data against the x-data. For that, we first have to create a
so-called figure window. Type and execute:

4. Periodic signals 1

 64

figure(1);
This call creates a new window on your screen. This window is identified here by the
number 1, and this number is called the figure handle. The figure handle enables us to
change figure properties like size, position, figure title, default fonts and font size, etc.
The next step is to create an axes graphic object. This is done as follows:

ha = axes;
Execute this. You will see now x- and y axes within the figure window. By default,
the limits are between 0 and 1. The variable ha is the axes handle, which identifies
this graphic object. Type:

ha
to see all kind of default axes properties. The handle can be used to change these
properties.

Now we are ready to plot the data:

hp = plot(x,y);
You will see a graph of the x- and y-data shown as coloured line segments that connects
each (x,y) point in the order that were given in the x and y array. This graph is a graphic
object of the type line. The variable hp is the handle to this object. You can see some
of the properties by typing hp<enter>. You can change the properties of the object
using this handle. For instance, type the following text in the command window, and
see what happens:

5. Inspect after each line what happens with the graph and its properties, and describe this

as comment in the pdf form:
hp.Color = 'r'; % add comment that describes what happens
hp.LineWidth = 1.5; % add comment that describes what happens
hp.LineStyle = '--'; % add comment that describes what happens
hp.Marker='o'; % add comment that describes what happens
hp.LineStyle='none'; % add comment that describes what happens

Graphs are only complete if they are provided with at least axis labels. In addition,
you may want to add a title and perhaps a legend. These can be added by using the
following functions:

xlabel: add a label at the x axis
ylabel: add a label at the y axis
title: add a title
legend: add a legend

Use these functions to add appropriate labels, title and legend. (For now the actual
text that you add is not important). Type ‘doc xlabel’, etc, to find the
explanation how to use these functions.

6. Apply the function to the current graph, and save the figure to file (use: either print –

r600 –dpng question6.png or print –r600 –djpeg question6.jpg)*. Add the
png‐file or jpg‐file to the pdf form.

Part III: Plotting functions of time
In this part, we consider a given function ()s t that could be the impulse response of an
electric circuit:

* Don’t copy-paste this, as pdfs use other characters than the editor; you have to retype it

4. Periodic signals 1

 65

 () exp cos(2) 0
t

s t A ft t


    
 

 for (3)

The purpose of this part is to
create a nice plot of this
function. That is, we have to
create an xy-graph in which
the time t forms the x-axis,
and ()s t is plotted in the y

direction against t. To do so,
we have to sample the
function ()s t . The plot is
presented in Figure.1.

 First, we define a finite number of points in time:
 1,2, , with nt n N  (4)
Then we create the samples of ()s t by computing s for every value of nt :
 ()n ns s t (5)
It is common practice to equidistantly sample the signal. That is, any two successive
points in time differ always by the same period of time:
 1 for any n nt t n    (6)

 is called the sampling period. Because the time starts at zero, and because of eq. (6),
we can generate the sequence nt as follows:
 (1) 1, , for nt n n N     (7)

To generate the sequence nt , we have to choose the sampling period D and the

number N of points in time. The criteria to select these two variables are:
a) The sampling of the data should not be visible in the graph.
b) The sequence nt should cover the interesting part of the time interval. Therefore, the last

point (1)Nt N   should be selected appropriate. Once Nt and N are chosen,  is also
fixed.

7. Suppose that it is given that:
 5 10 100 A V ms f Hz  

The exp() function in eq (3) forces the signal to approach to zero as time increases.

a) Determine the last point in time Nt such that 1()Ns t  is almost zero.

b) Assuming 300N , calculate  .
(Fill in the results in the pdf form.)

8. Create a new m-file, ass2.m, start a new section, and add code that generates an array t
that corresponds to with 1, ,nt n N  .

9. Add code that generates the array s that corresponds to ()ns t . Hint: see footnote†.
10. Plot the function; add appropriate x- and y labels, and a title.
11. The function min calculates the minimum value of an array. Use this function to calculate

the minimum of ()s t . Add this to the graph as a horizontal line that extends from 1 0t  to

† By default the * operator is a matrix-vector multiplication as shown in eq. (1) and (2). The expression
exp(-t/tau) will yield an array with a size equal to the one of t. The same holds for an expression
like cos(2*pi*f*t). Multiplication of the two expression is not a compatible matrix-vector
multiplication. Thus, an error message will result (try this). The operator “.*” is an element-by-element
multiplication. This is what we need.

Figure 1: Plot of s(t) where τ is the time constant.

4. Periodic signals 1

 66

Nt (Matlab: t(end)). Include a legend. Hint: see footnote‡. Add
the figure to file as a jpg or png file, and insert it in the pdf form.

Part IV &V: Plotting signals
A signal is often a time-varying voltage that, after AD conversion
(analogue to digital), becomes a sequences of numbers: the
samples. Each sample is associated with a point in time. In this
part, we consider an electrocardiogram (ECG) which is a record of the voltages between
electrodes that are attached to the surface of the skin of the chest. These voltages
represent the electrical activity of the heart. A typical ECG is more or less periodic.

An ECG record is available in the MATLAB datafile ecg.mat. After loading this file
(MATLAB command: load ecg), the samples of the ECG data are available in a
MATLAB array s. The corresponding time sequence of these samples is in the array t.

12. Load the signal and plot it. With the function axis([xmin xmax ymin ymax]) you can

set the limits of the graph (horizontally between xmin and xmax; vertically between ymin
and ymax). Set the horizontal limits exactly to 4 times the period of the signal, and the
vertical axis to -1 and +1.

Hint: MATLAB’s figure window contains a toolbar. On this toolbar, pressing the icon
invokes the data cursor tool. With that you can interactively place a data tip on the graph.
This enables you to interactively inspect your data. Under control of the keyboard arrows,
the data tip glides from left to right or vice versa. Selecting the data tip with the right mouse
button invokes a menu to further process the data tip.

13. Use a data tip to find the period of the signal (chose a strategy to find this period). Also,
find an interval of the time axis such that exactly 4 periods of the signal are within this
interval. Print the figure to file and insert in the pdf form.

The report:
 Just fill out the pdf form. Don’t forget your name, email and student id. Copy and paste

your code from the m-file ass2.m to the last page of the form.
 Deadline: 20/09/2018 at 17.30 strictly.
 Grading: This assignment will be graded (10 points).
 Submission via Canvas “Assignments”.

‡ By default, an axes replaces a graphic object if a new one is invoked. By executing hold on before
plotting the second object, this second object is added without deleting the already existing one.

Figure 2 a data tip

