
Programming with MATLAB

Elżbieta Pękalska (Delft University of Technology)

Gjerrit Meinsma (University of Twente)

Hans Zwart (University of Twente)

December
2018

This manual was prepared in the years 2001–2005 by Elżbieta Pękalska. At the TU Delft it was
used to teach students of Physics both programming (at least some concepts of it) and MAT-
LAB. At that time, it was based on the book "The Student Edition of MATLAB". The manual
is, however, written to be self-contained. Marjolein van der Glas took part in the preparation
of the first version. In the winter of 2005–2006 Hans Zwart added an index and a chapter on
symbolic computation. This version was used for a MATLAB course for Technical Medicine
students at the University of Twente. In September 2006 some typos were removed. In 2014
Gjerrit Meinsma revamped the material and partly rewrote it and he replaced the by now
outdated inline functions with the anonymous functions. In 2015 only minor changes were
made.

ii

Contents

Introduction . v

1 Getting started with MATLAB 1
1.1 Input via the command-line . 2
1.2 Help-facilities . 4
1.3 Interrupting a command or program . 5
1.4 Path . 5
1.5 Workspace issues . 5
1.6 Saving and loading data . 6
1.7 Script m-files . 7

2 Basic syntax and variables 9
2.1 MATLAB as a calculator . 9
2.2 An introduction to floating-point numbers (optional) 10
2.3 Assignments and variables . 11

3 Vectors and matrices 15
3.1 Vectors . 15

3.1.1 Colon notation and retrieving parts of a vector 16
3.1.2 Column vectors, complex vectors and the transpose 16
3.1.3 Element-wise operations . 17

3.2 Matrices . 21
3.2.1 Special matrices . 22
3.2.2 Building matrices and retrieving parts of matrices 23
3.2.3 Operations on matrices . 26

3.3 Multi-dimensional arrays . 31

4 Visualization 33
4.1 Simple 2D plots . 33
4.2 Several functions in one figure . 35
4.3 Plotting in the complex plane . 37
4.4 Other 2D plotting features . 37
4.5 Printing & saving figures . 38
4.6 3D line plots . 38
4.7 Plotting surfaces in 3D . 39
4.8 Animations . 42

5 Logicals and loops 43
5.1 Logical and relational operators . 43
5.2 The command find . 46
5.3 Conditional code execution . 47
5.4 Loops . 50
5.5 Evaluation of logical and relational expressions in the control flow structures . . 53

iii

6 Functions 55
6.1 Anonymous functions . 55
6.2 Function m-file . 57
6.3 Subfunctions . 59
6.4 Special function variables . 60
6.5 Local and global variables . 61
6.6 Passing functions to functions . 61
6.7 Scripts vs. functions vs. anonymous functions . 63
6.8 Recursion . 65

7 Numerical analysis 67
7.1 Curve fitting . 67
7.2 Interpolation . 68
7.3 Evaluation of functions . 69
7.4 Integration and differentiation . 69
7.5 Numerical computations and the control flow structures 70
7.6 Numerical solution of differential equations . 71

8 Text 73
8.1 Character strings . 73
8.2 Text input and output . 75

9 Cell arrays and structures 79
9.1 Cell arrays . 79
9.2 Structures . 80
9.3 Classes and object oriented programming . 82

10 Symbolic computation 83
10.1 Symbolic objects . 83
10.2 Solving symbolic expressions . 84
10.3 Solving ordinary differential equations . 85
10.4 From symbolic function to function handle . 86

11 Optimizing the performance of MATLAB code 87
11.1 Vectorization — speed-up of computations . 87
11.2 Array preallocation . 88
11.3 MATLAB tricks and tips . 89

12 File input/output operations 95
12.1 Text files . 96
12.2 Binary files . 97

13 Writing and debugging MATLAB programs 101
13.1 Structural programming . 101
13.2 Debugging . 103
13.3 Recommended programming style . 104

iv

Introduction

In this course you will learn how to use MATLAB, to design, and to perform mathematical
computations. You will also get acquainted with basic programming. If you learn to use this
program well, you will find it very useful in the future, since many technical and mathematical
problems can be solved using MATLAB.

This text includes all material (with some additional information) that you need for this
course, however, many things are treated briefly. Keep in mind that MATLAB has been around
for several decades now and over the years many users have contributed specialized routines
and toolboxes. To name but a few, one can nowadays analyze and listen to sound files and
play with pictures and movies. Such applications go beyond this introductory course, but this
course should put you on the right track, and perhaps one day you will develop your own
professional MATLAB toolbox.

Please test after each section whether you have sufficient understanding of the issues dis-
cussed. Use the lists provided below.

Chapters 1–2. You should be able to:

• recognize built-in variables;

• define variables and perform computations using them;

• perform basic mathematical operations;

• know how to suppress display with ; (semicolon);

• use the format command to adjust the Command window output;

• add and remove variables from the workspace; check which variables are currently present
in the workspace;

• use on-line help to get more information on a command and know how to use the
lookfor command;

• use the load and save commands to read/save data to a file;

• access files at different directories (manipulate path-changing commands);

• create and edit script m-files

Chapter 3. You should be able to:

• create vectors and matrices with direct assignment (using []);

• use linspace to create vectors;

• create random vectors and matrices;

• create matrices via the commands: eye, ones, zeros and diag;

• build a larger matrix from smaller ones;

• use colon notation to create vectors and extract ranges of elements from vectors and
matrices;

• extract elements from vectors and matrices with subscript notation;

v

• apply transpose operators to vectors and matrices;

• perform legal addition, subtraction, and multiplication operations on vectors and ma-
trices;

• understand the use of element-wise operators, such as .*, ./ and know how they differ
from the regular *, / operators;

• delete elements from vectors and matrices;

• compute inner products and the Euclidean length of vectors;

• create and manipulate complex vectors and matrices.

Chapter 4. You should be able to:

• use the plot command to make simple plots;

• know how to use hold on/off

• plot several functions in one figure either in one graphical window or by creating a few
smaller ones (the use of subplot);

• add a title, grid and a legend, describe the axes, change the range of axes;

• use logarithmic axes;

• make simple 3D line plots;

• plot surfaces, contours, change colors;

• save figures to files;

• optional: make some fancy plots;

• optional: create MATLAB animations.

Chapter 5. You should be able to:

• use relational operators: <, <=, >, >=, ==, ~= and logical operators: &, |, ~ and && and ||;

• understand the logical addressing;

• fully understand how to use the command find, both on vectors and matrices;

• use if . . . end, if . . . elseif . . . end and if . . . elseif . . . else . . . end and switch con-
structs;

• use for-loops and while-loops and know the difference between them;

• understand how logical expressions are evaluated in the control flow structures.

vi

Chapter 6. You should be able to:

• create anonymous functions;

• edit and run an function m-files;

• identify the differences between scripts, functions and anonymous functions;

• understand the concept of local and global variables;

• create a function with one or more input arguments and one or more output argu-
ments;

• use comment statements to document functions;

• know how to pass a functions as an input argument to another function via pointers @;

• understand what recursion is and know when to use it and when not.

Chapter 7. You should be able to:

• create and manipulate MATLAB polynomials;

• fit a polynomial to data;

• interpolate the data;

• evaluate a function;

• integrate and differentiate a function;

• solve ordinary differential equations;

Chapter 8. You should be able to:

• create and manipulate string variables, e.g. compare two strings, concatenate them,
find a substring in a string, convert a number/string into a string/number etc;

• use freely and with understanding the text input/output commands: input, disp and
fprintf;

Chapter 9. You should be able to:

• operate on cell arrays and structures;

Chapter 10. You should be able to:

• Create symbolic objects and expressions;

• Solve expressions symbolically;

• Solve differential equations symbolically and plot them.

vii

Chapter 11. You should be able to:

• optional: preallocate memory for vectors or matrices and know why and when this is
beneficial;

• replace basic loops with vectorized operations;

• use colon notation to perform vectorized operations;

• understand the two ways of addressing matrix elements using a vector as an index: tra-
ditional and logical indexing;

• use array indexing instead of loops to select elements from a matrix;

• use logical indexing and logical functions instead of loops to select elements from ma-
trices;

• understand MATLAB’s tricks.

Chapter 12. You should be able to:

• perform low level input and output with fopen, fscanf and fclose;

• understand how to operate on text files (input/output operations);

• get more understanding on the use of fprintf while writing to a file;

• optional: understand how to operate on binary files (input/output operations);

Chapter 13. You should be able to:

• know and understand the importance of structural programming and debugging;

• know how to debug your program;

• have an idea how to write programs using the recommended programming style.

Preliminaries

Below you find a few basic definitions on computers and programming. Please get acquainted
with them since they introduce key concepts needed in the coming sections:

• A bit (short for binary digit) is the smallest unit of information on a computer. A single
bit can hold only one of two values: 0 or 1. More meaningful information is obtained
by combining consecutive bits into larger units, such as byte.

• A byte – a unit of 8 bits, being capable of holding a single character. Large amounts
of memory are indicated in terms of kilobytes (1024 bytes), megabytes (1024 kilobytes),
and gigabytes (1024 megabytes).

• Binary system – a number system that has two unique digits: 0 and 1. Computers are
based on such a system, because of its electrical nature (charged versus uncharged).
Each digit position represents a different power of 2. The powers of 2 increase while
moving from the right most to the left most position, starting from 20 = 1. Here is an
example of a binary number and its representation in the decimal system:

10110 = 1∗24 +0∗23 +1∗22 +1∗21 +0∗20 = 16+0+4+2+0 = 24.

Because computers use the binary number system, powers of 2 play an important role,
e.g. 8 (= 23), 64 (= 26), 128 (= 27), or 256 (= 28).

viii

• Data is information represented with symbols, e.g. numbers, words, signals or images.

• A command is a instruction to do a specific task.

• An algorithm is a sequence of instructions for the solution of a specific task in a finite
number of steps.

• A program is the implementation of an algorithm suitable for execution by a computer.

• A variable is a container that can hold a value. For example, in the expression: x+y both
x and y are variables. They can represent numeric values, like 25.5 but also charac-
ters, like 'c' or character strings, like 'hello'. Variables make programs more flexible.
When a program is executed, the variables are then replaced with real data. That is why
the same program can process different sets of data.

Every variable has a name (called the variable name) and a data type. A variable’s data
type indicates the sort of value that the variable represents (see below).

• A constant is a value that never changes. That makes it the opposite of a variable.

• A data type is a classification of a particular type of information. The most basic data
types are:

– integer: a whole number; a number that has no fractional part, e.g. 3.

– floating-point: a number with a decimal point, e.g. 3.5 or 1.2e-16 (this stands for
1.2×10−16).

– character: readable text character, e.g. 'p'.

• A bug is an error in a program, causing the program to stop running, not to run at all or
to provide wrong results. Some bugs can be very subtle and hard to find. The process
of finding and removing bugs is called debugging.

• A file is a collection of data or information that has a name, stored in a computer. There
are many different types of files: data files, program files, text files etc.

• An ASCII is a widely used character encoding scheme. It is an abbreviation of American
Standard Code for Information Interchange and initially it favored English characters.
ASCII files are plain text files that are readable and editable by text editors and by many
other programs including WORD.

• A binary file is a file stored in a format, which is computer-readable but not human-
readable. Most numeric data and all executable programs are stored in binary files.
MATLAB binary files are those with the extension '*.mat'.

• A directory is a group of files and other directories. Operating systems with graphical
user interface, such as Mac OS X and Microsoft Windows, call it “map” or “folder”.

ix

x

Chapter 1

Getting started with MATLAB

MATLAB is a tool for mathematical calculations. It can be used as a scientific calculator, and it
allows you to visualize data in many different ways, perform matrix algebra, work with poly-
nomials and integrate functions and much, much more. In MATLAB you can create, execute
and save a sequence of commands. It is also a full-fledged yet user-friendly programming
language, which gives you the possibility to perform intricate mathematical calculations in a
structured fashion. MATLAB especially facilitates easy manipulation of arrays of data, such as
vectors, matrices and images.

FIGURE 1.1: A MATLAB desktop. Here the current folder is on the left. The command
window is in the middle, and on the right is the workspace and command history

Opening MATLAB creates a desktop with one or more windows, see Fig. 1.1. The most
important is the Command Window, which is where you interact with MATLAB, i.e. where you
enter commands and where MATLAB displays results. The string >> is the MATLAB prompt.
When the Command Window is active, a cursor appears after the prompt, indicating that
MATLAB is waiting for your input.

To exit MATLAB use the command exit or quit.

1

TABLE 1.1: Some mathematical notation and its MATLAB equivalent

Mathematical notation MATLAB command

a +b a+b

a −b a-b

ab a*b
a
b a/b or b\a
xb x^bp

x sqrt(x) or x^0.5

|x| abs(x)

π pi

4×103 4e3 or 4*10^+3p
−1 i or j

3−4i 3-4*i or 3-4i or 3-4*j or 3-4j
e, ex exp(1), exp(x)
ln(x), log(x) log(x), log10(x)
sin(x), arctan(x), ... sin(x), atan(x),...

1.1 Input via the command-line

MATLAB is an interactive system; commands followed by Enter are executed immediately.
The results are, if desired, displayed on screen. Table 1.1 contains a list of some elementary
MATLAB commands and their mathematical notation (a, b, x and y are numbers). Below you
find basic information to help getting started with MATLAB.

• Commands in MATLAB are executed by pressing Enter or Return. The output will be
displayed on screen. Try the following (hit Enter after the end of line):

>> 3 + 7.5

>> 18/4

>> 3 * 7

You see that spaces between numbers are not important in MATLAB.

• The result of the last un-assigned computation is stored in the variable ans. This ans is
an example of a MATLAB built-in variable. It can be used in the subsequent command.
For instance:

>> 14/4

ans =

3.5000

>> ans^(-6)

ans =

5.4399e-04

5.4399e-04 is a computer notation of 5.4399×10−4. Note that ans is overwritten by the
last command.

• You can define your own variables. Look how the information is stored in the variables
a and b:

>> a = 14/4

a =

2

3.5000

>> b = a^(-6)

b =

5.4399e-04

Read Preliminaries to better understand the concept of variables. You will learn more
on MATLAB variables in Section 2.3. The outcome of these two commands are not
stored in ans because they are already stored (in a and in b).

• If the command is followed by a semicolon ;, the output is suppressed. Check the dif-
ference between the following expressions:

>> 3 + 7.5

>> 3 + 7.5;

• It is possible to execute more than one command at the same time. The commands
should then be separated by commas (to display the output) or by semicolons (to sup-
press the output display), e.g.:

>> sin(pi/4), cos(pi); sin(0)

ans =

0.7071

ans =

0

Here the value of cos(pi) is not printed.

• By default, MATLAB displays only 5 digits even though it computes to some 15 digits.
The command format long increases the display to 15, and format short returns it to
5. For instance:

>> 312/56

ans =

5.5714

>> format long

>> 312/56

ans =

5.57142857142857

• The output may contain some empty lines; this can be suppressed by the command
format compact. In contrast, the command format loose will insert extra empty lines.

• To enter a statement that is too long to be typed on one line, use three periods ’...’
followed by Enter or Return. For instance:

>> sin(1) + sin(2) - sin(3) + sin(4) - sin(5) + sin(6) - ...

sin(8) + sin(9) - sin(10) + sin(11) - sin(12)

ans =

1.0357

• MATLAB is case sensitive, so a and A are two different variables in MATLAB;

• All text after a percent sign % until the end of a line is treated as a comment. Enter e.g.
the following:

3

>> sin(3.14159) % this is an approximation of sin(pi)

You will notice that some examples in this text are followed by comments. They are
meant for you, and you should not type them while entering the commands.

• Previous commands can be fetched back with the ↑ -key. The command can also be
changed, the ← and → -keys may be used to move around in a line and edit it. In
case of a long line, Ctrl-a and Ctrl-e might be useful; they move the cursor to the
beginning and the end of the line, respectively.

• To recall the most recent command starting with, say, c, type c at the prompt followed
by the ↑ -key. Similarly, cos followed by the ↑ -key will bring you to the last command
starting with cos.

• If you type cos and hit the Tab key then MATLAB will give you a list of all variables
and all commands it knows that begin with cos. This is useful if you wonder about
the existence of certain commands. Now MATLAB has thousands of commands so you
should be careful here.

Since MATLAB executes the command immediately, it might be useful to have an idea of the
expected outcome. You might be surprised how long it takes to print out a 1000×1000 matrix!

1.2 Help-facilities

MATLAB provides assistance through extensive online help. The help command is the sim-
plest way to get help. It displays the list of all possible topics. To get a more general introduc-
tion to help, try:

>> help help

If you already know the topic or command, you can ask for a more specified help. For in-
stance:

>> help ops

gives information on the operators and special characters in MATLAB. The topic you want
help on must be exact and spelled correctly. The lookfor command is more useful if you do
not know the exact name of the command or topic. For example:

>> lookfor inverse

displays a list of commands, with a short description, for which the word inverse is included
in its help-text. You can also use an incomplete name, e.g. lookfor inv. Besides the help

and lookfor commands, there is also a separate mouse driven help. The helpwin command
opens a new window on screen which can be browsed in an interactive way.

Exercise 1.1. Use help or lookfor to find out the following:

1. Is the inverse cosine function, known as cos−1 or arccos, one of the MATLAB’S elemen-
tary functions?

2. Does MATLAB have a mathematical function to calculate the greatest common divisor?

3. Look for information on logarithms. ä

4

Exercise 1.2. Type help to see which toolboxes are installed along with your copy of MATLAB.
What command is needed to get help on the toolbox matlab/matfun? ä

Fancier help is available with doc.

1.3 Interrupting a command or program

Sometimes you might spot an error in your command or program. Due to this error it can
happen that the command or program does not stop. Pressing Ctrl-C (or Ctrl-Break on PC)
forces MATLAB to stop the process. Sometimes, however, you may need to press it a few times.
After this the MATLAB prompt (>>) re-appears. This may take a while, though.

1.4 Path

In MATLAB, commands and programs are contained in “m-files”, which are plain text files
that have extension '.m'. The m-file must be located in one of the directories that MATLAB

searches. The list of these directories can be obtained by the command path. One of the
directories that is always taken into account is the current working directory, which can be
identified by the command pwd. By clicking the icon it is easy to change the current folder.
Use path, addpath and rmpath functions to modify the path. Instead it is also possible to
access the path browser from Set Path in the menu bar.

Exercise 1.3. Type path to check which directories are placed on your path. For this MATLAB

course you probably want to create a new directory called, say, MatlabCourse. Create such a
directory and than add this directory to the path. ä

1.5 Workspace issues

If you work in the Command Window, MATLAB retains all commands that you entered and all
variables that you created. These commands and variables are said to reside in the MATLAB

workspace. To recall a previous command use the ↑ -key. Variables can be verified with the
commands who, which gives a list of variables present in the workspace, and whos, which
includes also information on name, number of allocated bytes and class of variables. For
example, assuming that you performed all commands from Section 1.1, after typing who you
should get the following information:

>> who

Your variables are:

a ans b x

The command clear <name> deletes the variable <name> from the MATLAB workspace,
while clear or clear all removes all variables. This is useful when starting a new exercise.
For example:

>> clear a x

>> who

Your variables are:

ans b

Note that you cannot use comma after a variable, i.e. clear a, x, as it will be interpreted
as clear a followed by the command x (which prints the value of x on screen). See what the
result is when you do:

5

>> clear all

>> a = 1;

>> b = 2;

>> c = 3;

>> clear a, b, c

1.6 Saving and loading data

The easiest way to save or load MATLAB variables is by selecting Save Workspace or Import
Data from the menu-bar. This can also be done from the Command Window with the com-
mands save and load. The command save allows for saving your workspace variables either
into a binary file or an ASCII file (check Preliminaries on page ix on binary and ASCII files).
Binary files automatically get the .mat extension, which is not true for ASCII files. However,
it is recommended to add a .txt or .dat extension to ASCII files to emphasise that they are
readable by plain text editors and Word and many other programs.

Exercise 1.4. Learn how to use the save command by exercising:

>> clear all

>> s1 = sin(pi/4);

>> c1 = cos(pi/4);

>> c2 = cos(pi/2);

>> str = 'hello world'; % this is a string

>> save % saves all variables in binary format to matlab.mat

>> save data % saves all variables in binary format to data.mat

>> save numdata s1 c1 % saves numeric variables s1 and c1 to numdata.mat

>> save strdata str % saves a string variable str to strdata.mat

>> save allcos.dat c* -ascii % saves c1,c2 in 8-digit ascii format to allcos.dat

ä

The load command allows for loading variables into the workspace. It uses the same syn-
tax as save.

Exercise 1.5. Assuming that you have done the previous exercise, try to load variables from
the created files. Before each load command, clear the workspace and after loading check
which variables are present in the workspace (use who).

>> load % loads all variables from the file matlab.mat

>> load data s1 c1 % loads only specified variables from the file data.mat

>> load strdata % loads all variables from the file strdata.mat

It is also possible to read ASCII files that contain rows of space separated values. Such a file
may contain comments that begin with a percent character. The resulting data is placed into
a variable with the same name as the ASCII file (without the extension). Check, for example:

>> load allcos.dat % loads data from allcos.dat into variable allcos

>> who % lists variables present in the workspace now

ä

6

1.7 Script m-files

The easiest way to save your MATLAB commands is to store them in an external file called
script m-file. These files must have extension .m. To create a script you need to open an
editor, enter all commands needed, save it with the extension .m (e.g. mytask.m) and then run
it from the Command Window, by typing mytask. To open the MATLAB editor to make a new
script select New Sript from the menu bar or simply type edit in the Command Window. To
open an existing script use Open from the menu bar or type edit mytask (assuming the script
is called mytask.m). All commands in the script will be executed in MATLAB when you enter
the name of the file without the extension (e.g. mytask). The m-script file must be saved in
one of the directories in MATLAB’s path so that MATLAB can find it.

As an example, say you created the file short.m with these two commands:

x = 0:0.5:4;

plot(x,sin(x),'*-');

and that you saved the file somewhere in your MATLAB path. Typing short will then execute
the two commands. Another example: open the editor and type in the editor:

disp('A very nice day to you')

Next save this file under the name goodbye.m. Now type goodbye in the command window.
If everything goes well, then MATLAB answers with a friendly A very nice day to you. If
Matlab complains with

Undefined function or variable 'goodbye'.

then MATLAB cannot find the file. You can fix it by chancing the current folder.
M-files are very useful when the number of commands increases or when you want to

change values of some variables and re-evaluate them quickly.

Exercise 1.6. type edit sinplot.m. Then MATLAB’s Editor Window will appear. Enter the
lines listed below and save the file as sinplot.m:

x = 0:0.2:6;

y = sin(x);

plot(x,y);

title('Plot of y = sin(x)');

and then run it by typing:

>> sinplot

It makes a plot with title. The sinplot script affects the workspace. Check:

>> clear % all variables are removed from the workspace

>> who % no variables present

>> sinplot

>> who

Your variables are:

x y

ä

Be aware that all commands in a script have access to all variables in the workspace and
all variables created in this script become a part of the workspace. Scripts create and change

7

variables in the workspace without warning. You therefore have to be careful when using
generic single-letter variables, such as x and y.

Exercise 1.7. Write a script secondsage that asks the user for her age in years and then dis-
plays her age in seconds. Hint: do help input and do not worry about leap years and such.

ä

Bugs are inevitable, no matter how clever you are.

Exercise 1.8. Write a script ex1p8.m with an illegal command in line 3:

a=1;

b=2;

c=3/; % yes, this is wrong

d=4

Execute the code. MATLAB will complain that something is wrong. Now the good part: move
the mouse over to the underlined text of the complaint and click on it. ä

A final remark: you must add comments/explanations to the scripts that you write. With-
out comments your code will be virtually useless within a month because by then you will
have forgotten most of the details that seemed so obvious to you when you wrote the code.

For the remaining exercises in this course follow this naming convention: save
all commands for, say, Exercise 3.10 in an m-file called ex3p10.m and add com-
ments to the m-file. These m-files are needed for the assessment of your work.

8

Chapter 2

Basic syntax and variables

2.1 MATLAB as a calculator

There are three kinds of numbers in MATLAB: integers, real numbers and complex numbers.
In addition, MATLAB has representations for some non-numbers:

• Inf which denotes positive infinity, generated e.g. by 1/0,

• NaN which means Not-a-Number, obtained as a result of mathematically undefined op-
erations such as 0/0 or Inf-Inf.

You have already a bit of experience with MATLAB and you know that it can be used as a
calculator. For example, if you type

>> (23*17)/7

then MATLAB returns

ans =

55.8571

MATLAB has six basic arithmetic operations, such as: +, -, *, / or \ (left division) and ^

(exponentiation). Note that the two division operators are different:

>> 19/3 % mathematically: 19/3

ans =

6.3333

>> 19\3 % mathematically: 3/19

ans =

0.1579

Basic built-in functions, trigonometric, exponential, etc., are available. Try help elfun to
get the list of elementary functions.

Exercise 2.1. Evaluate the following expressions by hand and use MATLAB to check the an-
swers. Note the difference between the left and right divisors. Use help to learn more on
commands rounding numbers, such as: round, floor, ceil, etc.

1. 2/2*3

2. 8*54

3. 8*(54)

4. 7-5*49

5. 6-2/5+7^2-1

6. 10/25-3+2*4

9

7. 3^2/4

8. 3^2^3

9. 2+ round(6/9+3*2)/2

10. 2+floor(6/9+3*2)/2

11. 2+ceil(6/9+3*2)/2

12. x=pi/3; x=x-1; x=x+5; x=abs(x)/x

13. 1/Inf

14. 0*Inf

15. Inf*Inf

ä

Exercise 2.2. Define the format in MATLAB such that empty lines are suppressed and the
output is given with 15 digits. Calculate:

>> pi

>> sin(pi)

Note that the answer is not exactly 0. Use the command format to put MATLAB in standard-
format. ä

2.2 An introduction to floating-point numbers (optional)

In a computer, numbers can be represented only in a discrete form. It means that numbers
are stored within a limited range and with a finite precision. Integers can be represented
exactly with the base of 2 (read Preliminaries on page viii on bits and the binary system).
The typical size of an integer is 32 bits, so the largest positive integer, which can be stored,
is 232 = 4294967296. If negative integers are permitted, then 32 bits allow for representing
integers between ±215 = ±2147483648. Within this range, operations defined on the set of
integers can be performed exactly. The maximal integer value that MATLAB can handle is
intmax.

However, this is not valid for other real numbers. In practice, computers are integer ma-
chines and are capable of representing real numbers only by using complicated codes. The
most popular code is the floating point standard. The term floating point is derived from
the fact that there is no fixed number of digits before and after the decimal point, mean-
ing that the decimal point can float. Note that most floating-point numbers that a computer
can represent are just approximations. Therefore, care should be taken that these approxi-
mations lead to reasonable results. If a programmer is not careful, small discrepancies in the
approximations can cause meaningless results. Note the difference between e.g. the integer
arithmetic and floating-point arithmetic:

Integer arithmetic: Floating-point arithmetic:

2 + 4 = 6 18/7 = 2.5714

3 * 4 = 12 2.5714 * 7 = 17.9998

25/11 = 2 10000/3 = 3.3333e+03

When describing floating-point numbers, precision refers to the number of bits used for the
fractional part. The larger the precision, the more exact fractional quantities can be repre-
sented. Floating-point numbers are often classified as single precision or double precision. A
double-precision number uses twice as many bits as a single-precision value, so it can repre-
sent fractional values much better. However, the precision itself is not double. The extra bits
are also used to increase the range of magnitudes that can be represented.

MATLAB relies on a computer’s floating point arithmetic. You will have noticed that in the
last exercise the value of sin(π) was close to zero, but not exactly zero. This is due to the fact

10

that the value of π is represented with a finite precision and that the sine function is evaluated
with finite precision.

The fundamental type in MATLAB is double, which stands for a representation with a dou-
ble precision. It uses 64 bits. The single precision obtained by using the single type offers 32
bits. Since most numeric operations require high accuracy the double type is used by default.
This means, that when the user is inputting integer values in MATLAB (for instance, k = 4),
the data is still stored in double format.

The smallest and largest floating-point number that MATLAB can handle are realmin and
realmax. They are about 2 × 10±308. The relative accuracy can be defined as the smallest
positive number ε that added to 1, creates the result larger than 1, i.e. 1+ε> 1. It means that
in floating-point arithmetic, for positive values smaller than ε, the result equals to 1 (in exact
arithmetic, of course, the result is always larger than 1). In MATLAB, ε is stored in the built-in
variable eps ≈ 2.2204×10−16. This means that the relative accuracy of individual arithmetic
operations is about 15 digits.

2.3 Assignments and variables

Working with complex numbers is easily done with MATLAB.

Exercise 2.3. Choose two complex numbers, for example −3+ 2i and 5− 7i. Add, subtract,
multiply, and divide these two numbers. ä

During this exercise, the complex numbers had to be typed four times. To reduce this,
assign each number to a variable. For the previous exercise, this results in:

>> z = -3 + 2*i;

>> w = 5 - 7*i;

>> y1 = z + w;

>> y2 = z - w;

>> y3 = z * w;

>> y4 = z / w;

>> y5 = w \ z;

Formally, there is no need to declare (i.e. define the name, size and the type of) a new
variable in MATLAB. A variable is created by an assignment (e.g. z = -3 + 2*i), i.e. values
are assigned to variables. Each newly created numerical variable is always of the double type,
i.e. real numbers are approximated with the highest possible precision. You can change this
type by converting it into e.g. the single type1. In some cases, when huge matrices should be
handled and precision is not very important, this might be a way to proceed. Also, when only
integers are taken into consideration, it might be useful to convert the double representations
into e.g. int32 integer type1. Note that integer numbers are represented exactly, no matter
which numeric type is used, as long as the number can be represented in the number of bits
used in the numeric type.

Bear in mind that undefined values cannot be assigned to variables. So, the following is
not possible:

>> clear x; % to make sure that x does not exist

>> f = x^2 + 4 * sin(x)

It becomes possible by:

>> x = pi / 3;

1a variable a is converted into a different type by performing e.g. a = single(a), a = int32(a) etc.

11

>> f = x^2 + 4 * sin(x)

Variable names begin with a letter, followed by letters, numbers or underscores. MATLAB

recognizes only first 63 characters of the name.

Exercise 2.4. Here are some examples of different types of MATLAB variables. You do not
need to understand them all now, since you will learn more about them during the course.
Create them manually in MATLAB:

>> this_is_my_simple_variable_which_I_typed_in_after_a_first_course_on_typing = 5

% check what happens; the name is very long

>> 2t = 8 % what is the problem with this command?

>> t2 = 8 % This is allowed

>> 2*t = 8 % what is the problem with this command?

>> M = [1 2; 3 4; 5 6] % a matrix

>> c = 'E' % a character

>> str = 'Hello world' % a string

>> m = ['J','o','h','n'] % try to guess what it is

Check the types using the command whos. Use clear <name> to remove a variable from the
workspace. ä

As you already know, MATLAB variables can be created by an assignment. There is also a
number of built-in variables, e.g. pi, eps or i, summarized in Table 2.1. In addition to creating
variables by assigning values to them, another possibility is to copy one variable, e.g. b into
another, e.g. a. In this way, the variable a is automatically created (if a already existed, its
previous value is lost):

>> b = 10.5;

>> a = b;

A variable can also be created as a result of the evaluated expression:

>> a = 10.5;

>> c = a^2 + sin(pi*a)/4;

or by loading data from text or '*.mat' files.
If min is the name of a function (see help min), then a defined, e.g. as:

>> b = 5;

>> c = 7;

>> a = min(b,c); % create a as the minimum of b and c

will call that function, with the values b and c as parameters. The result of this function (its
return value) will be written (assigned) into a. So, variables can be created as results of the
execution of built-in or user-defined functions. You will learn more about functions in Sec-
tion 6.2.

Important: do not use variable names that are defined as function names (for instance mean

or error)2! If you intend to use a suspicious variable name, use help <name> to find out if the
function already exists.

2There is always one exception of the rule: variable i is often used as counter in a loop, while it is also used as
i =

p
−1.

12

TABLE 2.1: Built-in variables in MATLAB

Variable name Value/meaning

ans the default variable name used for storing the last unassigned result
pi π= 3.141592653589793..
eps the smallest positive number that added to 1 makes a result larger than 1
Inf representation for positive infinity, e.g. 1/0
nan or NaN representation for not-a-number, e.g. 0/0
i or j i = j =

p
−1

nargin/nargout number of function input/output arguments used
realmin/realmax the smallest/largest usable positive real number: 2.2251×10−308 / 1.7977×10308

13

14

Chapter 3

Vectors and matrices

The principal data type in MATLAB is the array, and among these the one-dimensional arrays
(aka vectors) and two-dimensional arrays (aka matrices) and numbers are the most common.

3.1 Vectors

Row vectors are easily defined in MATLAB by listing the entries separated by commas or spaces
such as v=[11 12 13] or v=[11,12,13]. The number of entries of a vector is known as the
length of the vector. Entries of a vector are also referred to as elements or components.

>> v = [-1 sin(3) 7]

v =

-1.0000 0.1411 7.0000

>> length(v)

ans =

3

A vector can be multiplied by a scalar (a number) or added/subtracted to/from another
vector of the same length, or a number can be added/subtracted to/from a vector. All these
operations are carried out element-by-element. Vectors can also be assembled from existing
ones.

>> v = [-1 2 7];

>> w = [2 3 4];

>> z = v + w % an element-by-element sum

z =

1 5 11

>> vv = v + 2 % add 2 to all elements of vector v

vv =

1 4 9

>> t = [2*v, -w]

t =

-2 4 14 -2 -3 -4

Using indices one can retrieve, change or display entries:

>> v(2) = -3 % change the 2nd element of v, and display the new v

v =

-1 -3 7

>> w(2) % display the 2nd element of w

ans =

3

15

3.1.1 Colon notation and retrieving parts of a vector

With the colon notation we can define row vectors of equidistantly spaced numbers (see Ta-
ble 3.1 and do help colon to learn more):

>> 2:5

ans =

2 3 4 5

>> -2:3

ans =

-2 -1 0 1 2 3

More general, first:step:last is the row vector whose first entry is first, whose second
entry is first+step, et cetera, untill it reaches last:

>> 0.2:0.5:2.4

ans =

0.2000 0.7000 1.2000 1.7000 2.2000

>> -3:3:10

ans =

-3 0 3 6 9

>> 1.5:-0.5:-0.5 % negative step is also allowed

ans =

1.5000 1.0000 0.5000 0 -0.5000

Segments of vectors are easily retrieved using the colon notation:

>> r = [-1:2:6, 2, 3, -2]

r =

-1 1 3 5 2 3 -2

>> r(3:6) % the elements of r at positions 3,4,5,6

ans =

3 5 2 3

>> r(1:2:5) % the elements of r at positions 1, 3 and 5

ans =

-1 3 2

>> r([1,1,6,7]) % yes, you can also list the indices one by one

ans =

-1 -1 3 -2

3.1.2 Column vectors, complex vectors and the transpose

To create column vectors, simply separate the entries by a new line or semicolon ’;’:

>> z = [1

7

7];

z =

1

7

7

>> u = [-1; 3; 5]

u =

-1

3

5

16

The operations that we introduced for row vectors, such as addition and indexing, works
the same for column vectors. It is also possible to turn a row vector into a column vector, and
the other way round. In mathematics this operation is called transposition. In MATLAB we
simply include an ' at the end of the expression:

>> u' % if u is a column vector then u' is a row vector

ans =

-1 3 5

>> v = [-1 2 7]; % v is a row vector

>> u' + v % row + row = row

ans =

-2 5 12

>> u + v' % column + column = column

ans =

-2

5

12

If z is a complex vector, then z' is the complex conjugate transpose of z. Pay particular
attention to the signs of the imaginary parts. For instance:

>> z = [1+2i, -1+i]

z =

1.0000 + 2.0000i -1.0000 + 1.0000i

>> z' % this is the complex conjugate transpose

ans =

1.0000 - 2.0000i

-1.0000 - 1.0000i

>> z.' % this is the traditional transpose!

ans =

1.0000 + 2.0000i

-1.0000 + 1.0000i

3.1.3 Element-wise operations

MATLAB has the very useful element-wise product. For two row vectors x and y of equal length,
the element-wise product x.*y is the row vector

[
x1 y1 x2 y2 . . . xn yn

]
. Likewise for col-

umn vectors:

>> u = [-1; 3; 5] % a column vector

>> v = [-1; 2; 7] % a column vector

>> u .* v % this is an element-by-element multiplication

1

6

35

You can now easily tabulate the values of a function for a given array of arguments. For in-
stance:

>> x = 1:0.5:4;

>> y = sqrt(x) .* cos(x)

y =

0.5403 0.0866 -0.5885 -1.2667 -1.7147 -1.7520 -1.3073

Similarly, ./ means element-wise division, and .^ element-wise exponentiation.

17

>> x = 2:2:10

x =

2 4 6 8 10

>> y = 6:10

y =

6 7 8 9 10

>> x./y

ans =

0.3333 0.5714 0.7500 0.8889 1.0000

>> z = -1:3

z =

-1 0 1 2 3

>> x./z % division 4/0, resulting in Inf

Warning: Divide by zero.

ans =

-2.0000 Inf 6.0000 4.0000 3.3333

>> z./z % division 0/0, resulting in NaN

Warning: Divide by zero.

ans =

1 NaN 1 1 1

>> z.^2

ans =

1 0 1 4 9

>> z.^z % remember that z=[-1 0 1 2 3]

ans = %

-1 1 1 4 27 % yes: 0^0 is considered 1!

The operator ./ can also be used to divide a scalar by a vector:

>> x=1:5;

>> 2/x % this is not possible

??? Error using ==> /

Matrix dimensions must agree.

>> 2./x % but this is!

ans =

2.0000 1.0000 0.6667 0.5000 0.4000

Yet another useful property is that we can add a number to vector. It adds the number to
every element of the vector:

>> u = [-1 3 5] % a row vector

>> u+10

ans =

9 13 15

Exercise 3.1.

1. Create a vector consisting of the even numbers between 21 and 99.

2. Given x = [2 1 3 7 9 4 6], explain what the following commands do (we have not
explained what end means but you can guess it):

• x(3)

• x(1:7)

• x(1:end)

• x(1:end-1)

• x(2:2:6)

• x(6:-2:1)

• x(end-2:-3:2)

• sum(x)

• mean(x)

• min(x)

18

3. Given a vector t, determine the MATLAB expression that computes the vector defined
by the formula

• ln(2+ t + t 2)

• cos(t)2 − sin(t)2

• et (1+cos(3t))

• tan−1(t).

4. Create a vector x with the elements:

• {2,4,6,8, . . . ,16}

• {9,7,5,3,1,−1,−3,−5}

• {1, 1
2 , 1

3 , 1
4 , 1

5 }

• {0, 1
2 , 2

3 , 3
4 , . . . , 99

100 }

5. Create a vector x with the elements: xn = (−1)n

2n−1 for n = 1,2,3, ...,200. Find the sum of the
first 50 elements x1, . . . , x50.

6. Let x = 20:10:200. Create a vector y of the same length as x such that

• yi = xi −3 for each entry.

• yi = xi for every even index i and yi = xi +11 for every odd index i .

• yi =p
xi for every index i .

• yi = x3
i for i = 1,4,9,16 and for all other indices yi = xi .

7. Let x = [1+3i, 2-2i] be a complex vector. Check the following expressions:

• x'

• x.'

• x * x'

• x * x.'

ä

TABLE 3.1: Manipulation of (groups of) matrix elements. Here i,j,k,l,m,n are posi-
tive integers

Command Result

A(i,j) Ai j

A(:,j) j -th column of A
A(i,:) i -th row of A
A(k:l,m:n) (l −k +1)× (n −m +1) matrix with elements Ai j with k ≤ i ≤ l , m ≤ j ≤ n
v(i:j) ’vector-segment’ (vi , vi+1, . . . , v j) of vector v

19

TABLE 3.2: Frequently used matrix operations and functions

Command Result

C = A + B sum of two matrices
C = A - B subtraction of two matrices
C = A * B multiplication of two matrices
C = A .* B ’element-by-element’ multiplication (A and B are of equal size)
C = A^k power of a matrix (k ∈Z; can also be used for A−1)
C = A.^k ’element-by-element’ power of a matrix
C = A' the (complex conjugate) transpose of a matrix; (AT if real)
C = A ./ B ’element-by-element’ division (A and B are of equal size)
X = A \ B the solution in the least squares sense to the equation AX = B
X = B / A the solution of X A = B , analogous to the previous command

C = inv(A) C becomes the inverse of A
n = rank(A) n becomes the rank of matrix A
x = det(A) x becomes the determinant of matrix A
x = size(A) x becomes a row-vector of 2 elements: the number of rows and columns of A
[m,n] = size(A) m and n are the number of rows and columns of A
x = trace(A) x becomes the trace (sum of diagonal elements) of matrix A

A = eye(n) A is an n ×n identity matrix
A = zeros(n,m) A is an n ×m matrix with zeros (default m = n)
A = ones(n,m) A is an n ×m matrix with ones (default m = n)
A = diag(v) results in a diagonal matrix with the elements v1, v2, . . . , vn on the diagonal
v = diag(A) results in a vector equivalent to the diagonal of A
X = tril(A) X is lower triangular part of A
X = triu(A) X is upper triangular part of A
A = rand(n,m) A is an n ×m matrix of elements drawn from a uniform distribution on [0,1]
A = randn(n,m) A is an n ×m matrix of elements drawn from a standard normal distribution

v = max(A) v is a vector of the maximum values of the columns in A
v = max(A,[],dim) v is a vector of the maximum values along the dimension dim in A
v = min(A)

v = min(A,[],dim) ditto - with minimum
v = sum(A)

v = sum(A,dim) ditto - with sum
v = mean(A)

v = mean(A,dim) ditto - with mean

20

TABLE 3.3: Advanced matrix operations and functions

Command Result

C = null(A) C is an orthonormal basis for the null space of A obtained from the
singular value decomposition

C = orth(A) C is an orthonormal basis for the range of A
C = rref(A) C is the reduced row echelon form of A
L = eig(A) L is the vector of the (possibly complex) eigenvalues of matrix A
[Q,L] = eig(A) produces a diagonal matrix L of eigenvalues and a full matrix Q whose

columns are the corresponding eigenvectors of a square matrix A
S = svd(A) S is a vector containing the singular values of a rectangular matrix A
[U,S,V] = svd(A) S is a diagonal matrix with the singular values of A on the diagonal

(in decreasing order); the columns of U and V are
the corresponding singular vectors of A

x = norm(v) x is the Euclidean length of vector v
x = linspace(a,b,n) x is the vector of n equally spaced points from a to b
x = logspace(a,b,n) x is a vector starting at 10a , ending at 10b containing n values

3.2 Matrices

An n ×k matrix is a two-dimensional array of numbers having n rows and k columns. Enter-
ing a matrix element-by-element is similar to that of vectors. Commas or spaces are used to
separate elements in a row, and semicolons are used to switch to the next row. For example,
the matrix

A =
1 2 3

4 5 6
7 8 9

can be entered as follows

>> A = [1 2 3; 4 5 6; 7 8 9] % row by row input

A =

1 2 3

4 5 6

7 8 9

Other examples:

>> A2 = [1:4; -1:2:5]

A2 =

1 2 3 4

-1 1 3 5

>> A3 = [1 3

-4 7]

A3 =

1 3

-4 7

To MATLAB a row vector is a 1×n matrix and a column vector is an n ×1 matrix. Trans-
posing a vector changes it from a row to a column or the other way round. Similarly, the
transpose of a matrix turns all the rows into columns, in following way:

>> A2

21

A2 =

1 2 3 4

-1 1 3 5

>> A2' % transpose of A2

ans =

1 -1

2 1

3 3

4 5

>> size(A2) % the size (dimensions) of A2: 2 rows, 4 columns

ans =

2 4

>> size(A2')

ans =

4 2

3.2.1 Special matrices

There are several special matrices in MATLAB (see Table 3.2). A few examples are given below.

>> E = [] % an empty matrix of 0-by-0 elements!

E =

[]

>> size(E)

ans =

0 0

>> I = eye(3); % the 3-by-3 identity matrix

I =

1 0 0

0 1 0

0 0 1

>> x = [2; -1; 7];

>> I*x % I is such that for any 3-by-1 x holds I*x = x

ans =

2

-1

7

>> r = [1 3 -2];

>> R = diag(r) % create a diagonal matrix with r on the diagonal

R =

1 0 0

0 3 0

0 0 -2

>> A = [1 2 3; 4 5 6; 7 8 9];

>> diag(A) % the diagonal entries of A

ans =

1

5

9

>> B = ones(3,2) % matrix of all ones, with 3 rows and 2 columns

B =

1 1

1 1

1 1

>> C = zeros(size(B')) % a matrix of all zeros of the size given by B'

C =

0 0 0

22

0 0 0

>> D = rand(2,3) % a matrix of random numbers

D =

0.0227 0.9101 0.9222

0.0299 0.0640 0.3309

>> v = linspace(1,2,4) % a vector from 1 to 2 with 4 entries

v =

1.0000 1.3333 1.6667 2.0000

3.2.2 Building matrices and retrieving parts of matrices

We somestimes need to build a matrix from a number of smaller matrices. That is a piece of
cake in MATLAB:

>> x = [4; -1]

x =

4

-1

>> y = [-1 3]

y =

-1 3

>> X = [x y'] % X consists of the columns x and y'

X =

4 -1

-1 3

>> T = [-1 3 4; 4 5 6];

>> t = 1:3;

>> T = [T; t] % add to T a new row, namely the row vector t

T =

-1 3 4

4 5 6

1 2 3

>> G = [1 5; 4 5; 0 2]; % G is a matrix of the 3-by-2 size; check size(G)

>> T2 = [T G] % concatenate two matrices

T2 =

-1 3 4 1 5

4 5 6 4 5

1 2 3 0 2

>> T3 = [T; G ones(3,1)] % G is 3-by-2, T is 3-by-3

T3 =

-1 3 4

4 5 6

1 2 3

1 5 1

4 5 1

0 2 1

>> T3 = [T; G']; % this is also possible; what do you get here?

>> [G' diag(5:6); ones(3,2) T]

% you can concatenate many matrices

ans =

1 4 0 5 0

5 5 2 0 6

1 1 -1 3 4

1 1 4 5 6

1 1 1 2 3

23

Parts of a matrix can be retrieved in a similar way as it is done for vectors. An element
in a matrix is indexed by the row and the column to which it belongs. Mathematically, the
element from the i -th row and the j -th column of the matrix A is denoted as Ai j ; in MATLAB

this is A(i,j).

>> A = [1:3; 4:6; 7:9]

A =

1 2 3

4 5 6

7 8 9

>> A(1,2), A(2,3), A(3,1)

ans =

2

ans =

6

ans =

7

>> A(4,3) % this is not possible: A is a 3-by-3 matrix!

??? Index exceeds matrix dimensions.

>> A(2,3) = A(2,3) + 2*A(1,1) % change the value of A(2,3)

A =

1 2 3

4 5 8

7 8 9

It is easy to automatically extend the size of a matrix. For the matrix A above it can be
done e.g. as follows:

>> A(5,2) = 5 % assign 5 to the position (5,2); all un-initialized

A = % elements of A are set to zero:

1 2 3

4 5 8

7 8 9

0 0 0

0 5 0

If needed, the other zero elements of the matrix A can also be defined, by e.g.:

>> A(4,:) = [2, 1, 2]; % assign vector [2, 1, 2] to the 4th row of A

>> A(5,[1,3]) = [4, 4]; % assign: A(5,1) = 4 and A(5,3) = 4

>> A % how does the matrix A look like now?

Rectangular parts of the matrix A can be retrieved:

>> A(3,:) % the 3rd row of A

ans =

7 8 9

>> A(:,2) % the 2nd column of A

ans =

2

5

8

1

5

>> A(1:2,:) % the 1st and 2nd row of A

ans =

1 2 3

24

4 5 8

>> A([3,1],1:2) % rows 3 and 1, columns 1 and 2

ans =

7 8

1 2

As you have seen in the examples, MATLAB is efficient in manipulating (groups of) matrix-
elements. An overview is given in Table 3.1. The concept of an empty matrix [] is also very
useful. For instance, a group of columns or rows can be removed from a matrix by assigning
an empty matrix to it.

>> C = [1 2 3 4; 5 6 7 8; 1 1 1 1];

>> D = C; % now a copy of C is stored in D

>> D(:,2) = [] % remove the 2nd column from D (this does not affect C)

>> C ([1,3],:) = [] % remove the rows 1 and 3 from C

Exercise 3.2. Clear all variables (use clear). Define the matrix A=[1:4; 5:8; 1 1 1 1]. Pre-
dict and check the result of the following operations:

1. x = A(:,3)

2. B = A(1:3,2:2)

3. A(1,1) = 9 + A(2,3)

4. A(2:3,1:3) = [0 0 0; 0 0 0]

5. A(2:3,1:2) = [1 1; 3 3]

6. y = A(3:3,1:4)

7. A = [A; 2 1 7 7; 7 7 4 5]

8. C = A([1,3],2)

9. D = A([2,3,5],[1,3,4])

10. D(2,:) = []

ä

Exercise 3.3. Let T = [3 4; 1 8; -4 3] and A = [diag(-1:2:3) T; -4 4 1 2 1]. Perform
the following operations on A:

1. rertieve a vector consisting of the 2nd and 4th elements of the 3rd row.

2. find the minimum of the 3rd column.

3. find the maximum of the 2nd row.

4. compute the sum of the 2nd column

5. compute the mean of the row 1 and the mean of row 4

6. retrieve the submatrix consisting of the 1st and 3rd rows and all columns

7. retrieve the submatrix consisting of the 1st and 2nd rows and the 3rd, 4th and 5th
columns

8. compute the total sum of the 1st and 2nd rows

9. add 3 to all elements of the 2nd and 3rd columns

ä

Exercise 3.4. Let A = rand(5,6). It creates a 5× 6 random matrix. Provide the commands
that

1. assign the first row of A to a vector x;

25

2. assign the last 2 rows of A to a vector y;

3. create the column vector that equals the sum of all the columns of A;

4. create the row vector that equals the sum of all the rows of A;

5. compute the standard error of the mean of each column of A (i.e. the standard deviation
divided by the square root of the number of elements used to compute the mean).

ä

Exercise 3.5. Let A = [2 7 9 7; 3 1 5 6; 8 1 2 5]. Explain the results or perform the fol-
lowing commands:

1. A'

2. A(1,:)'

3. A(:,[1 4])

4. A([2 3],[3 1])

5. reshape(A,2,6)

6. A(:)

7. flipud(A)

8. fliplr(A)

9. [A; A(end,:)]

10. [A; A(1:2,:)]

11. sum(A)

12. sum(A')

13. mean(A)

14. mean(A')

15. sum(A,2)

16. mean(A,2)

17. min(A)

18. max(A')

19. min(A(:,4))

20. [min(A)' max(A)']

21. [[A;sum(A)] [sum(A,2);sum(A(:))]]

22. max(min(A))

23. assign the even-numbered columns of
A to an array B

24. assign the odd-numbered rows to an
array C

25. convert A into a 4-by-3 array

26. compute the reciprocal of each element
of A

27. compute the square-root of each ele-
ment of A

28. remove the second column of A

29. add a row of all 1’s at the beginning and
at the end

30. swap the 2nd row and the last row

ä

3.2.3 Operations on matrices

Table 3.2 on page 20 lists some frequently used matrix operations and functions. The impor-
tant ones are the element-wise operations, matrix-vector products and matrix-matrix addi-
tion and multiplication. In the class of the element-wise operations — also called dot opera-
tions because they are preceded by a dot — there are the element-wise product, element-wise
division and element-wise exponentiation (power). Those operations work the same as they
do for vectors: they address matrices element-by-element, therefore they can be performed
on matrices of the same size. Some examples of basic operations are given below:

26

>> B = [1 -1 3; 4 0 7]

B =

1 -1 3

4 0 7

>> B2 = [1 2; 5 1; 5 6];

>> B = B + B2' % add two matrices; why B2' is needed instead of B2?

B =

2 4 8

6 1 13

>> B-2 % subtract 2 from all elements of B

ans =

0 2 6

4 -1 11

>> ans = B./4 % divide all elements of the matrix B by 4

ans =

0.5000 1.0000 2.0000

1.5000 0.2500 3.2500

>> 4/B % this is not possible

??? Error using ==> /

Matrix dimensions must agree.

>> 4./B % this is possible; equivalent to: 4.*ones(size(B))./B

ans =

2.0000 1.0000 0.5000

0.6667 4.0000 0.3077

>> C = [1 -1 4; 7 0 -1];

>> B .* C % multiply element-by-element

ans =

2 -4 32

42 0 -13

>> ans.^3 - 2 % do for all elements: raise to the power 3, subtract 2

ans =

6 -66 32766

74086 -2 -2199

>> ans ./ B.^2 % element-by-element division

ans =

1.0e+03 *
0.0015 -0.0041 0.5120

2.0579 -0.0020 -0.0130

>> r = [1 3 -2];

>> r * B2 % allowed because r has as many rows as B2 has columns

ans =

6 -7

A new type of element-wise matrix / vector addition. In mathematics addition of two ma-
trices A+B is defined only if A and B have the same number of rows and the same number of
columns. However, since MATLAB version R2017b addition is also defined for certain differ-
ently dimensioned matrices. Here is an overview of all possibilities, old and new:

• If A and B have the same dimensions then A+B is defined as in mathematics:

+ =

This rule works in older version of MATLAB as well.

27

• If one of the two is a number and the other is a matrix then A+B adds the number to
every entry of the matrix:

+ = + =

This rule works in older version of MATLAB as well.

• If one is a column vector and the other is a matrix with equally many rows as the col-
umn vector, then A+B adds the column to every column of the matrix:

+ = + =

• Similarly, if one is a row vector and the other is a matrix with equally many columns as
the row vector, then A+B adds the row to every row of the matrix:

+ = + =

• If one is a column vector and the other is a row vector then A+B returns the matrix of all
possible sums ai +b j :

+ = + =

The above explains the new rules for addition. Similar rules apply to element-wise division,
multiplication and exponentiation. For example

>> [1 2 3; 4 5 6].*[-10; 100] % in newer versions of Matlab this should work

ans =

-10 -20 -30

400 500 600

>> [1 2 3; 4 5 6].*[1 -10 100] % ... and this as well

ans =

1 -20 300

4 -50 600

Concerning the standard matrix-vector and matrix-matrix products, two things should be
reminded from linear algebra. First, a matrix A with n rows and k columns can be multiplied
from the right by a column vector x with k entries. The product Ax is then a column vector
with n entries. More general, given two matrices A and B , the product C = AB is well defined
if and only if A has as many columns as B has rows. To envision this product C = AB it may
be useful to place A to the left of C and B above C , see Fig. 3.1. The product C has as many
rows as A and as many columns as B . The entry ci j in the i th row and j th column of C is
determined by row i of A and column j of B : assuming A has k columns (and hence B has k
rows) this is ci j = ai 1b1 j +ai 2b2 j +·· ·+ai k bk j .

>> b = [1 3 -2];

>> B = [1 -1 3; 4 0 7]

B =

1 -1 3

4 0 7

>> b * B % not possible: b is 1-by-3 and B is 2-by-3

??? Error using ==> *

28

A

B

C = AB

row i

column j

ci jai1 aik

b1 j

bk j

ci j = ai1b1 j +ai2b2 j +·· ·+aik bk j

FIGURE 3.1: Matrix product C = AB : place A to left of C and B above C . Then entry
ci j follows from the corresponding row of A and corresponding column of B . The
product AB is defined only if A has as many columns as B has rows

Inner matrix dimensions must agree.

>> b * B' % this is allowed: length(b) == numbers of rows of B'

ans =

-8 -10

>> B' *ones(2,1)

ans =

5

-1

10

>> C = [3 1; 1 -3];

>> C * B

ans =

7 -3 16

-11 -1 -18

>> C.^3 % this is an element-by-element power

ans =

27 1

1 -27

>> C^3 % this is equivalent to C*C*C

ans =

30 10

10 -30

>> ones(3,4)./4 * diag(1:4)

ans =

0.2500 0.5000 0.7500 1.0000

0.2500 0.5000 0.7500 1.0000

0.2500 0.5000 0.7500 1.0000

Exercise 3.6. Perform all operations from Table 3.2, using some matrices A and B, vector v

and scalars k, a, b, n, and m. ä

Exercise 3.7. Find two 2×2 matrices A and B for which A .* B does not equal A * B. ä

Exercise 3.8. Let A be a square matrix.

29

1. Create a diagonal matrix, which has the same diagonal as A. Hint: you may use the
command diag.

2. Create a matrix B, whose elements are the same as those of A except the entries on the
main diagonal. The diagonal of B should consist of 1s.

3. Create a tridiagonal matrix T, whose three diagonal are taken from the matrix A. Hint:
you may use the commands triu and tril. ä

Exercise 3.9. Given the vectors x = [1 3 7], y = [2 4 2] and matrices A=[3 1 6; 5 2 7]

and B = [1 4; 7 8; 2 2], determine which of the following statements can be correctly ex-
ecuted (and if not, try to understand why) and provide the result:

1. x + y

2. x + A

3. x' + y

4. A - [x' y']

5. A + [0;10]

6. [x; y] + A

7. [x; y']

8. A - 3

9. A + B

10. B' + A

11. B * A

12. A .* B

13. A' .* B

14. 2 * B

15. 2 .* B

16. B ./ x'

17. B ./ [x' x']

18. 2 / A

19. ones(1,3)*A

20. ones(1,3)*B

ä

Exercise 3.10. Consider the following problem. John and Pete are together 90 years old. John
is 10 years older than Pete. These are two linear equations:

John+Pete = 90, John−Pete = 10.

Write this in the form[
a11 a12

a21 a22

][
x1

x2

]
=

[
b1

b2

]
with x1 the age of John and x2 the age of Pete and a11, a12, a21, a22,b1,b2 certain numbers that
you have to find. Once you found matrix A and vector b compute x in MATLAB and check the
outcome. (Hint: look at Table 3.2.) ä

Exercise 3.11. Let A be a random 5×5 matrix and let b be a random 5×1 vector. Given that
Ax = b, try to find x (look at Table 3.2). Explain the difference between the operators \ and /

and the command inv. Having found x, check whether Ax −b is close to a zero vector. ä

Exercise 3.12. Consider a rectangular plate of size 1 by 2 which is held at the temperature
of zero degrees at three of its borders and at 20 degrees at the fourth border, see Fig. 3.2. We
want to know the temperature distribution inside the plate.

We assume the following model. We take n points along the horizontal axis and m points
along the vertical axis. All these points are equally distributed and the corner points are in-
cluded. (In Fig. 3.2 we took n = 4 and m = 8.) The temperature at point (n,m) we assume to
be the average of the temperature at its four neigboring points (n −1,m), (n +1,m), (n,m +1),
and (n,m − 1). Write this model in the form Ax = b with x the vector of unknown temper-
atures and take n = 4 and m = 8. Obtain the temperature profile (that is, determine x) and
check if the profile makes sense given the 20 and 0 degrees at the borders. ä

30

0

0

0

0

0

0

0

0

0

0

0

0

0

0

20 0

20 0

20

20

FIGURE 3.2: Heat distribution inside a plate. The temperature at the left is 20. At the
other borders it is zero. See Exercise 3.12

Exercise 3.13. Let A = ones(6) + eye(6). Normalize the columns of the matrix A so that all
columns of the resulting matrix, say B, have the Euclidean norm1 (length) equal to 1. ä

Exercise 3.14. Let H=hilb(4). This computes the 4×4 Hilbert matrix. Determine in MATLAB

the inverse H−1 of this matrix and verify in MATLAB that H−1H is the identity matrix. ä

3.3 Multi-dimensional arrays

In MATLAB one can do A(1,2,2)=1 as well! This defines a 3-dimensional array. Yes, 1-dimensional
arrays we call vectors, 2-dimensional arrays we call matrices, but MATLAB can handle higher
dimensional arrays. We do not explore this any further.

1The Euclidean norm of a vector (x1, . . . , xp) is defined as
√

x2
1 +·· ·+x2

p . It can be computed with norm(x).

31

32

Chapter 4

Visualization

MATLAB can visualize data and export it in various formats. We introduce 2D and 3D plots.

TABLE 4.1: Plot colors and styles

Symbol Color Symbol Line style

r red ., o point, circle
g green *, d star, diamond
b blue x, + x-mark, plus
y yellow - solid line
m magenta -- dash line
c cyan : dot line
k black -. dash-dot line

4.1 Simple 2D plots

With the command plot, a graphical display in the 2D plane can be made. For a real vector y
of n entries, the command plot(y) draws the points [1, y(1)], [2, y(2)], . . ., [n, y(n)] and con-
nects the consecutive points with straight lines. The command plot(x,y) does the same for
the points [x(1), y(1)], [x(2), y(2)], . . . , [x(n), y(n)]. Here x and y have to be vectors of the same
length. For exampe,

x(1) x(2) x(3) x(4)

y(1)

y(2)

y(3)
y(4)

.

The commands loglog, semilogx and semilogy are similar to plot, except that one or
both axes are then in logarithmic scale.

Exercise 4.1 (Power laws). It is a curious fact that many relations approximately satisfy a
power law, y = cxα. For instance the number of gas stations y in a city of population size x
satisfies a power law with α≈ 0.77. Also, the calories y needed per day of a mammal of weight
x behaves like a power law and now α≈ 0.74 — irrespective of the species of mammal. Let us
set up some artificial data:

33

alpha=3/4;

x=100*rand(1,500); % 500 random numbers between 0 and 100

y=1234*x.^alpha;

Given x and y, which plot command would be best to figure out if x, y satisfy a power law? Is
it plot, or semilogx, or semilogy, or loglog? ä

Exercise 4.2. Type the following commands after predicting the result:

x = 0:10;

y = 2.^x; % then y = [1 2 4 8 16 32 64 128 256 512 1024]

plot(x,y) % get a graphic representation

semilogy(x,y) % make the y-axis logarithmic

As you can see, the same figure is used for both plot commands. The previous function is
removed as soon as the next is displayed. The command figure creates a new figure window.
Repeat the previous commands, but create a new figure before plotting the second function,
so that you can see both functions in separate windows. You can also switch back to a figure
using figure(n), where n is its number. ä

To plot a graph of a function, it is important to sample the function sufficiently well. Com-
pare the following two examples:

n = 5;

x = 0:1/n:3; % coarse sampling

y = sin(5*x);

plot(x,y)

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n = 25;

x = 0:1/n:3; % good sampling

y = sin(5*x);

plot(x,y)

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The solid line is used by plot by default. It is possible to change the style and color, e.g.:

x = 0:.04:3;

y = sin(5*x);

plot(x,y,'r--')

This produces the dashed red line. Here the third argument of plot specifies the color (op-
tional) and the line style. Additionally, the line width can be specified. You can also mark the
points by a selected marker and choose its size:

34

TABLE 4.2: Useful commands to make plots

Command Result

grid on/off adds a grid to the plot at the tick marks or removes it
box off/on removes the axes box or shows it

axis([xmin xmax ymin ymax]) sets the minimum and maximum values of the axes
axis square makes the axis box square
axis equal makes the increments on the axis equal
axis image like axis equal, but with tighter bounding box

xlabel('text') plots the label text on the x-axis
ylabel('text') plots the label text on the y-axis
zlabel('text') plots the label text on the z-axis
title('text') plots a title above the graph

text(x,y,'text') adds text at the point (x,y)
gtext('text') adds text at a manually (with a mouse) indicated point

legend('fun1','fun2') plots a legend box to name your functions
(move the box with your mouse)

legend off deletes the legend box
clf clear the current figure

figure(n) make figure n the current figure
subplot creates a subplot in the current figure

x = 0:.04:3; y = sin(5*x);

plot(x,y,'r*--','linewidth',1,'markersize',6)

To add a title, grid and to label the axes, do

xlabel('x-axis'); % default fontsize is rather small

ylabel('y-axis','Fontsize',14); % larger fontsize

title('Function y = sin(5*x)','Fontsize',14);

set(gca,'Fontsize',12); % set fontsize of axes text in current plot to 12

grid % you can remove grid again by calling "grid off"

Table 4.1 documents several possibilities of the plot command. Do help plot to see
them all.

Exercise 4.3. Make a plot connecting the coordinates: (2, 6), (2.5, 18), (5, 17.5), (4.2, 12.5) and
(2,12) by a line. ä

Exercise 4.4. Plot the function y = sin(x)+x−x cos(x) in two separate figures for the intervals:
0 < x < 30 and −100 < x < 100. Add a title and axes description. ä

Exercise 4.5. Plot a circle with the radius r = 2, knowing that the parametric equation of a
circle is x(t) = r cos(t), y(t) = r sin(t) for t ∈ [0,2π]. ä

4.2 Several functions in one figure

There are different ways to draw several functions in the same figure. The first one is with the
command hold on. Then all subsequent plots are added to the current figure. To stop it do
hold off. When a number of functions is plotted in a single figure, it is useful to use different
symbols and colors. An example is:

35

x1 = 1:.1:3.1;

y1 = sin(x1);

plot(x1,y1,'md');

x2 = 1:.3:3.1;

y2 = sin(-x2+pi/3);

hold on

plot(x2,y2,'k*-.','linewidth',1)

plot(x1,y1,'m-','linewidth',2)

hold off

A second method to display a few functions in one figure is to plot several functions at the
same time. The next commands produces the same output as the commands in the previous
example:

x1 = 1:.1:3.1;

y1 = sin(x1);

x2 = 1:.3:3.1;

y2 = sin(-x2+pi/3);

plot(x1, y1,'md', x2, y2, 'k*-.', x1, y1, 'm-')

To adjust the axes to better fit the plots one might add

axis([1,3.1,-1,1])

or

axis tight

It might also be useful to exercise with the options of the axis command (see help axis),
such as axis on/off, axis equal, axis image or axis normal. A descriptive legend can be
included with the command legend, e.g.:

legend ('sin(x)', 'sin(-x+pi/3)');

It is also possible to produce subplots in one figure window. With the command subplot(p,r,n),
the figure window is divided horizontally and vertically into p × r subfigures, and subfigure n
is selected as current subfigure. The commands plot, title, grid, etc. affect only in the
current subfigure. So, if you want to change something in another subfigure, you must first
switch to that subfigure:

x = 1:.1:4;

y1 = sin(3*x);

y2 = cos(5*x);

y3 = sin(3*x).*cos(5*x);

subplot(1,3,1); plot(x,y1,'m-'); title('sin(3*x)')

subplot(1,3,2); plot(x,y2,'g-'); title('cos(5*x)')

subplot(1,3,3); plot(x,y3,'k-'); title('sin(3*x) * cos(5*x)')

Exercise 4.6. Plot the functions f (x) = x, g (x) = x3, h(x) = ex and z(x) = ex2
over the interval

[0,4] on the normal scale and on the log-log scale. Use an appropriate sampling to get smooth
curves. Describe your plots by using the functions: xlabel, ylabel, title and legend. ä

Exercise 4.7. Make a plot of the functions: f (x) = sin(1/x) and f (x) = cos(1/x) over the inter-
val [0.01,0.1]. How do you create x so that the plots look sufficiently smooth? ä

36

4.3 Plotting in the complex plane

As explained in the beginning of this chapter, for a real vector y of length n the command
plot(y) draws the points

[1, y(1)], [2, y(2)], . . . , [n, y(n)]

and connects the consecutive points with straight lines. If however the vector y is complex,
then the command plot(y) draws the points

[Re(y(1)), Im(y(1))], [Re(y(2)), Im(y(2))], . . . , [Re(y(n)), Im(y(n))],

and (again) connects them with straight lines. Thus for a complex vector y the command
plot(y) is the same as plot(real(y),imag(y)).

Exercise 4.8. Make a plot of the functions f (t) = eit and f (t) = eit + 1
2 e10it . Choose a sensible

range for t . ä

4.4 Other 2D plotting features

In the introduction of this section, some commands similar to plot, loglog, semilogx and
semilogy were mentioned. There are, however, more ways to display data. MATLAB has a
number of functions designed for plotting specialized 2D graphs, e.g.: fill, polar, bar, barh,
pie, hist, errorbar or stem. In the example below, fill is used to create a polygon:

N = 5;

k = -N:N;

x = sin(k*pi/N);

y = cos(k*pi/N); % x and y - vertices of the polygon to be filled

fill(x,y,'g')

axis square

text(-0.45,0,'I am a green polygon')

Exercise 4.9. To get an impression of other visualizations, type the following commands and
describe the result (note that the command figure creates a new figure window):

figure

x = -2.9:0.2:2.9;

bar(x,exp(-x.*x)); % bar plot of a bell shaped curve

figure

stem(x,exp(-x.*x)); % stem plot (aka "lollipop" plot)

figure

x = 0:0.25:10;

stairs(x,sin(x)); % stairstep plot of a sine wave

figure

x = -2:0.1:2;

y = erf(x); % error function; check help if you are interested

e = rand(size(x)) / 10;

errorbar (x,y,e); % errorbar plot

figure

r = rand(5,3);

subplot(1,2,1);

bar(r,'grouped') % bar plot

subplot(1,2,2);

bar(r,'stacked')

37

figure

x = randn(200,1); % normally distributed random numbers

hist(x,15) % histogram plot with 15 bins

ä

4.5 Printing & saving figures

Before printing a figure, you might want to add some information, such as a title, or change
the lay-out somewhat. Table 4.2 shows some of the commands that can be used.

Exercise 4.10. Plot the functions y1 = sin(4x), y2 = x cos(x), y3 = (x +1)−1px for x = 1:0.25:
10; and a single point (x, y) = (4,5) in one figure. Use different colors and styles. Add a legend,
labels for both axes and a title. Add also a text to the single point saying: ’single point’. Change
the minimum and maximum values of the axes such that one can look at the function y3 in
more detail. ä

When you like the displayed figure, you can print it to paper. The easiest way is to click on
File in the menu-bar of the figure window and to choose Print. If you click OK in the print
window, your figure will be sent to the printer indicated there.

There exists also a print command, which can be used to send a figure to a printer or
output it to a file. You can optionally specify a print device (i.e. an output format such as jpeg
or png) and options that control various characteristics of the printed file (i.e., which figure
to print etc). You can also print to a file if you specify the file name. If you do not provide an
extension, print adds one. Since they are many parameters they will not be explained here
(check help print to learn more). Instead, try to understand the examples:

print -dwinc % print current Figure to current printer in color

print -f1 -deps myfile.eps % print Figure 1 to myfile.eps in black/white

print -f1 -depsc myfilec.eps % print Figure 1 to myfilec.eps in color

print -dtiff myfile1.tiff % print current Figure to myfile1.tiff

print -dpng myfile1.png % print current Figure to myfile1.png

print -f2 -djpeg myfile2 % print Figure 2 to myfile2.jpg

Choose EPS or PDF if you want to include it in LATEX-documents. EPS and PDF are usually not
bitmaps but vector graphics, meaning that they are error-free and small in size.

Exercise 4.11. Practise with printing, especially to a file. Try to print figures from the previous
exercises. ä

4.6 3D line plots

The command plot3 to plot lines in 3D is equivalent to the command plot in 2D. The format
is the same as for plot, it is, however, extended by an extra coordinate. An example is plotting
the curve r defined parametrically as r (t) = (t sin(t), t cos(t), t) over the interval [−10π,10π].

t = linspace(-10*pi,10*pi,200);

plot3(t.*sin(t), t.*cos(t), t, 'md-'); % plot the curve in magenta, indicate the

% points with diamonds, and connect them

% with a straight line

title('Curve r(t) = [t sin(t), t cos(t), t]');

xlabel('x-axis');

ylabel('y-axis');

zlabel('z-axis');

grid

38

Exercise 4.12. Make a 3D smooth plot of the curve defined parametrically as:

(x(t), y(t), z(t)) = (sin(t),cos(t),sin2(t))

for t = [0,2π]. Plot the curve in green, with the points marked by circles. Add a title, descrip-
tion of axes and the grid. You can rotate the image by clicking Tools at the Figure window
and choosing the Rotate 3D option or by typing rotate3D at the prompt. Then by clicking at
the image and dragging your mouse you can rotate the axes. Exercise with this option. ä

4.7 Plotting surfaces in 3D

MATLAB provides a number of commands to plot 2D surfaces in 3D. We begin with surfaces
defined by a function z = f (x, y) with (x, y) living in some rectangular domain. Plotting such
z = f (x, y) requires in MATLAB a gridded rectangular domain (x, y). The command meshgrid

helps in constructing this grid.

[X, Y] = meshgrid (-1:.5:1, 0:.5:2)

X =

-1.0000 -0.5000 0 0.5000 1.0000

-1.0000 -0.5000 0 0.5000 1.0000

-1.0000 -0.5000 0 0.5000 1.0000

-1.0000 -0.5000 0 0.5000 1.0000

-1.0000 -0.5000 0 0.5000 1.0000

Y =

0 0 0 0 0

0.5000 0.5000 0.5000 0.5000 0.5000

1.0000 1.0000 1.0000 1.0000 1.0000

1.5000 1.5000 1.5000 1.5000 1.5000

2.0000 2.0000 2.0000 2.0000 2.0000

The domain [−1,1]× [0,2] is now gridded with a grid-spacing 0.5 in both directions, and
the grid-points are [X (i , j),Y (i , j)]. To obtain a smooth surface z = f (x, y), the grid-spacing
should be small enough. The surface can be plotted with the commands mesh or surf and
variations:

[X,Y] = meshgrid(-1:.05:1, 0:.05:2);

Z = sin(5*X) .* cos(2*Y);

mesh(X,Y,Z); % "fishnet" plot with color

surf(X,Y,Z); % colored surface plot

surfl(X,Y,Z); % colored surface plot with lamp

shading interp % interpolate (smooth)

colormap(copper) % change colormap to "copper"

title ('Function z=sin(5x)*cos(2y)')

xlabel('x')

ylabel('y')

zlabel('z')

See Fig. 4.1. You can also try the command waterfall instead of mesh.

Exercise 4.13. Produce a nice graph that demonstrates as clearly as possible the behavior of

the function f (x, y) = x y2

x2+y4 near the point (0,0). Note that the grid-spacing around this point
should be small. ä

Surfaces need not necessarily be defined on a rectangular grid (x, y). It is possible to draw
surfaces where all three components (x, y, z) are parameterized. For instance, to plot the sur-

39

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

x

Function z=cos(5x)*cos(2*y)

y

z

FIGURE 4.1: Example of mesh and surfl plots

40

face of the unit sphere you might want to use the parameterization

(x(t , s), y(t , s), z(t , s)) = (cos(t)cos(s),cos(t)sin(s),sin(t)) t ∈ [−π/2,π/2], s ∈ [0,2π].

Since (t , s) lives in rectangular domain we can now plot the unit sphere as follows.

[T,S] = meshgrid(-pi/2:.05:pi/2, 0:.05:(2*pi));

X=cos(T).*cos(S);

Y=cos(T).*sin(S);

Z=sin(T);

surf(X,Y,Z);

In fact the sphere is predefined in MATLAB, do type sphere.m to find out how it is defined.

Exercise 4.14. Plot the parametric function of r and θ:

(x(r,θ), y(r,θ), z(r,θ)) = (r cos(θ),r sin(θ),sin(6cos(r)−nθ)).

Choose n to be constant. Observe, how the graph changes depending on different n ∈N. ä

The MATLAB function peaks is a function of two variables, obtained by translating and
scaling Gaussian distributions. Perform, for instance:

[X,Y,Z] = peaks; % create values for plotting the function

surf(X,Y,Z); % plot the surface

figure

contour (X,Y,Z,30); % draw the contour lines in 2D

colorbar % adds a bar with colors corresponding to the z-axis

title('2D-contour of PEAKS');

figure

contour3(X,Y,Z,30); % draw the contour lines in 3D

title('3D-contour of PEAKS');

pcolor(X,Y,Z); % z-values are mapped to the colors and presented as

% a 'checkboard' plot; similar to contour

Use close all to close all figures and start a new task (or use close 1 to close Figure
no. 1 etc). Use colormap to define different colors for plotting.

To locate e.g. the minimum value of the peaks function on the grid, you can proceed as
follows:

[mm,I] = min(Z); % a row vector of the min elements of each column

% I is a vector of corresponding indices

[Zmin, j] = min (mm); % Zmin is the minimum, j is the index where attained

% So minimum of matrix Z is attained at index (I(j),j)

xpos = X(I(j),j); %

ypos = Y(I(j),j); % position of the minimum value

contour (X,Y,Z,25);

xlabel('x-axis');

ylabel('y-axis');

hold on

plot(xpos(1),ypos,'*');

text(xpos(1)+0.1,ypos,'Minimum');

hold off

It is also possible to combine two or more plots into one figure. For instance:

surf(peaks(25)+6); % move the z-values with the vector [0,0,6]

hold on

pcolor(peaks(25));

41

Exercise 4.15. Plot the surface f (x, y) = x y e−x2−y2
over the domain [−2,2]× [−2,2]. Find the

values and the locations of the minima and maxima of this function and explain how the code
works. ä

4.8 Animations

A sequence of graphs can be put in motion in MATLAB, i.e. you can make a movie using MAT-
LAB graphics tools. To learn how to create a movie, analyze first the script below which shows
the plots of f (x) = sin(nx) over the interval [0,2π] and = 1, . . . ,5:

N = 5;

M = moviein(N);

x = linspace (0,2*pi);

for n=1:N

plot (x,cos(n*x),'r-');

xlabel('x-axis')

if n > 1,

ss = strcat('cos(',num2str(n),'x)');

else

ss = 'cos(x)';

end

ylabel(ss)

title('Cosine functions cos(nx)','FontSize',12)

axis tight

grid

M(:,n) = getframe;

pause(1.8)

end

movie(M) % this plays a quick movie

Here, a for-loop construction has been used to create the movie frames. You will learn
more on loops in Section 5.4. Also the command strcat has been used to concatenate strings.
Use help to understand or learn more from Section 8.1.

Play this movie to get acquainted. Five frames are first displayed and at the end, the same
frames are played again faster. Command moviein, with an integral parameter, tells MATLAB

that a movie consisting of N frames is going to be created. Consecutive frames are generated
inside the loop. Via the command getframe each frame is stored in the column of the matrix
M. The command movie(M) plays the movie just created and saved in columns of the matrix
M. Note that to create a movie requires quite some memory. It might be useful to clear M from
the workspace later on.

Exercise 4.16. Write a script that makes a movie consisting of 5 frames of the surface f (x, y) =
sin(nx)sin(ny) over the domain [0,2π]× [0,2π] and n = 1 : 5. Add a title, description of axes
and shading. ä

42

Chapter 5

Logicals and loops

With loops we can efficiently perform repetitive tasks, and with logicals (or booleans) we can
choose which tasks to perform, and which to skip.

5.1 Logical and relational operators

The two logical values are TRUE and FALSE. In MATLAB the result of a logical operation is 1

if it is true and 0 if it is false. Table 5.1 shows the relational and logical operations. Read it
carefully. Another way to get to know more about them is to type help relop. The relational
operators <, <=, >, >=, == and ~= can be used to compare two arrays of the same size or an array
to a scalar. The logical operators &, | and ~ allow for the logical combination or negation of
relational operators. In addition, three functions are also available: xor, any and all (use
help to find out more).

TABLE 5.1: Relational and logical operations

Command Result

a = (b > c) a is 1 if b is larger than c. Similar are: <, >= and <=

a = (b == c) a is 1 if b is equal to c

a = (b ~= c) a is 1 if b is not equal c
a = ~b logical complement: a is TRUE if b is FALSE, and the other way around
a = (b & c) logical AND: a is 1 if b = TRUE AND c = TRUE
a = (b | c) logical OR: a is 1 if b = TRUE OR c = TRUE
a = (b && c) Short-circuit AND: like a=b&c but does not evaluate c if

the result is already determined by b (if b is FALSE)
a = (b || c) Short-circuit OR: like a=b|c but does not evaluate c if

the result is already determined by b (if b is TRUE)

Important: MATLAB treats every non-zero number as true. Thus

>> b = 10;

>> 1 & b

ans =

1

This show that you should be careful in the distinction between numbers and logical vari-
ables.

Exercise 5.1. Predict and explain the outcome of following commands.

43

b = 10;

whos

b = 1 | b

whos

ä

The logical & precedes | in MATLAB. Both 0&1|1 and 1|1&0 hence are true. A common
situation is:

>> b = 10;

>> 1 | b > 0 & 0

ans =

1

>> 1 | (b > 0 & 0) % this indicates the same as above

ans =

1

>> (1 | b > 0) & 0

ans =

0

>> b=0;

>> a=(b~=0&&1/b) % the double && suppresses evaluation of 1/0

a =

0

This shows that you should use brackets to indicate in which way the operators should be
evaluated.

The introduction of the logical data type has forced some changes in the use of non-
logical 0-1 vectors as indices for subscripting. You can see the differences by executing the
following commands that attempt to extract the elements of y that correspond to either the
odd or even elements of x, assuming that x and y are two vectors of the same length:

x=1:6;

y=11:16;

y(rem(x,2)) % is this what we want?

y(logical(rem(x,2))) % or this?

y(~rem(x,2)) % this?

y(~logical(rem(x,2))) % or this, or both? (for the even elements)

Use whos to understand the differences.

Exercise 5.2. Exercise with logical and relational operators:

1. Predict and check the result of each of the operations of Table 5.1 for b = 0 and c = -1.

2. Predict and check the result of each logical operator for b = [2 31 -40 0] and c = 0.

3. Define two random vectors logical(round(rand(1,7))) and perform all logical oper-
ations, including xor, any and all.

ä

Exercise 5.3. Exercise with logical and relational operators:

1. Let x = [1 5 2 8 9 0 1] and y = [5 2 2 6 0 0 2]. Execute and explain the results
of the following commands:

44

• x > y

• y < x

• x == y

• x <= y

• y >= x

• x | y

• x & (~y)

• (x > y) | (y < x)

• (x > y) & (y < x)

2. Let x = 1:10 and y = [3 5 6 1 8 2 9 4 0 7]. The exercises here show the techniques
of logical-indexing. Execute and interpret the results of the following commands:

• (x > 3) & (x < 8)

• x(x > 5)

• y(x <= 4)

• x((x < 2)|(x>=8))

• y((x < 2)|(x>=8))

• x(y<0)

ä

Exercise 5.4. Let x = [3 16 9 12 -1 0 -12 9 6 1]. Provide the command(s) that will:

1. set the positive values of x to zero;

2. set values that are multiples of 3 to 3 (make use of rem);

3. multiply the even values of x by 5;

4. extract the values of x that are greater than 10 into a vector called y;

5. set the values in x that are less than the mean to 0;

6. set the values in x that are above the mean to their difference from the mean.

ä

Exercise 5.5. Execute the following commands and try to understand how z is defined.

x = -3:0.05:3;

y = sin(3*x);

subplot(1,2,1);

plot(x,y);

axis tight

z = (y < 0.5) .* y;

subplot(1,2,2);

hold on

plot(x,y,'r:');

plot(x,z,'r');

axis tight

hold off

ä

Before moving on, check whether you now understand the following relations:

a = randperm(10); % random permutation

b = 1:10;

b - (a <= 7) % subtract from b a 0-1 vector (1 if a<=7 otherwise 0)

(a >= 2) & (a < 4) % return ones at positions where 2 <= a < 4

~(b > 4) % return ones at positions where b <= 4

(a == b) | b == 3 % return ones at positions where a equals b or b equals 3

any(a > 5) % return 1 if ANY of the a elements are larger than 5

any(b < 5 & a > 8) % return 1 if there in the evaluated expression

% (b < 5 & a > 8) appears at least one 1

all(b > 2) % returns 1 when ALL b elements are larger than 2

45

5.2 The command find

You can extract all elements from the vector or the matrix satisfying a given condition, e.g.
equal to 1 or larger than 5, by using logical addressing. The same result can be obtained via
the command find, which returns the positions (indices) of such elements. For instance:

>> x = [1 1 3 4 1];

>> i = (x == 1)

i =

1 1 0 0 1

>> y = x(i)

y =

1 1 1

>> j = find(x == 1) % j holds indices of those elements satisfying x == 1

j =

1 2 5

>> z = x(j)

z =

1 1 1

An another example is:

>> x = -1:0.05:1;

>> y = sin(x) .* sin(3*pi*x);

>> plot (x,y, '-'); hold on

k = find (y <= -0.1)

k =

9 10 11 12 13 29 30 31 32 33

>> plot (x(k), y(k), 'ro');

>> r = find (x > 0.5 & y > 0)

r =

35 36 37 38 39 40 41

>> plot (x(r), y(r), 'r*');

The command find operates in a similar way on matrices:

>> A = [1 3 -3 -5; -1 2 -1 0; 3 -7 2 7];

>> k = find (A >= 2.5)

k =

3

4

12

>> A(k)

ans =

3

3

7

In this way, find reshapes first the matrix A into a column vector, i.e. it operates on A(:),
i.e. all columns are concatenated one after another. Therefore, k is a list of indices of elements
larger than or equal to 2.5 and A(k) gives the values of the selected elements. Also the row
and column indices can be returned, as shown below:

>> [I,J] = find (A >= 2.5)

I =

3

1

46

3

J =

1

2

4

>> [A(I(1),J(1)), A(I(2),J(2)), A(I(3),J(3))] % lists the values

ans =

3 3 7

Exercise 5.6. Let A = ceil(5*randn(6,6)). Perform the following:

1. find the indices and list all elements of A that are smaller than -3;

2. find the indices and list all elements of A that are smaller than 5 and larger than -1;

Exercise with both: logical indexing and the command find. ä

5.3 Conditional code execution

With if-blocks we can choose which command to execute next, depending whether a logical
(boolean) expression is TRUE or not. The general description is given below. In the following
examples the command disp is frequently used. This command displays on the screen the
text between the quotes.

The simplest if-block has the general syntax

if logical_expression

statement1

statement2

....

end

other commands

If the logical expression is TRUE then the statements are executed and after that the other
commands. If the expression is FALSE then the statements are skipped and MATLAB jumps to
the other commands. For example:

if (a > 0)

b = a; % executed only if a>0

disp ('a is positive'); % displayed only if a>0

end

disp('end of code'); % always displayed

Often we need to execute one set of statements if the logical expression is TRUE, and another
set if it is FALSE. This is accommodated for by the else-block. The general syntax is

if logical_expression

block of statements

(evaluated if TRUE)

else

block of statements

(evaluated if FALSE)

end

For example:

47

if (temperature > 100)

disp ('Above boiling.');

toohigh = 1;

else

disp ('Temperature is OK.');

toohigh = 0;

end

With the elseif-block we can combine more conditions. The general syntax is:

if logical_expression1

statements % if logical_expression1 is TRUE

elseif logical_expression2

statements % if logical_expression1 is FALSE

statements % and logical_expression2 is TRUE

elseif logical_expression3

statements % if logical_expression1 and

statements % logical_expression2 are FALSE,

statements % and logical_expression3 is TRUE

else

block of statements evaluated % in all other cases

end

An example is:

if (height > 190)

disp ('very tall'); % above 190

elseif (height > 170)

disp ('tall'); % in between 170 and 190

elseif (height < 150)

disp ('small'); % less than 150

else

disp ('average'); % in between 150 and 170

end

Exercise 5.7. In each of the following questions, evaluate the given code fragments. Inves-
tigate each of the fragments for the various starting values given on the right. Use MATLAB

to check your answers (be careful, since the fragments are not always the proper MATLAB

expressions):

1.

if n > 1 a) n = 7 m = ?

m = n + 2 b) n = 0 m = ?

else c) n = -7 m = ?

m = n - 2

end

2.

if s <= 1 a) s = 1 t = ?

t = 2z b) s = 7 t = ?

elseif s < 10 c) s = 57 t = ?

t = 9 - z d) s = 300 t = ?

elseif s < 100

t = sqrt(s)

48

else

t = s

end

3.

if t >= 24 a) t = 50 h = ?

z = 3t + 1 b) t = 19 h = ?

elseif t < 9 c) t = -6 h = ?

z = t^2/3 - 2t d) t = 0 h = ?

else

z = -t

end

4.

if 0 < x < 7 a) x = -1 y = ?

y = 4x b) x = 5 y = ?

elseif 7 < x < 55 c) x = 30 y = ?

y = -10x d) x = 56 y = ?

else

y = 333

end

ä

Exercise 5.8. Write a script that checks whether an integer can be divided by 2 or 3. Consider
all possibilities, such as: divisible by both 2 and 3, divisible by 2 and not by 3 etc. [Hint: use
the command rem]. ä

Another selection structure is switch, which switches between several cases depending
on an expression, which is either a scalar or a string. An example is

method = 2;

switch method

case {1,2}

disp('Method is linear.'); % if method==1 or method==2

case 3

disp('Method is cubic.'); % if method==3

case 4

disp('Method is nearest.'); % if method==4

otherwise

disp('Unknown method.'); % if method not equal to 1 or 2 or 3 or 4

end

The statements following the first case where the expression matches the choice are executed.
This construction can be very handy to avoid long if .. elseif ... else ... end con-
structions. The expression can be a scalar or a string. A scalar expression matches a choice if
expression == choice. A string expression matches a choice if strcmp(expression, choice)

returns 1 (is true) (strcmp compares two strings).

Important: Note that the switch-construction only allows the execution of one group of
commands, namely the first case that matches.

49

Exercise 5.9. Assume that the months are represented by numbers from 1 to 12. Write a
script that asks you to provide a month number and returns the number of days in that par-
ticular month. (You may assume it is not a leap year.) Alternatively, write a script that asks
you to provide a month name (e.g. ’June’) instead of a number. Use the switch-construction.
(Hint: type help input.) ä

5.4 Loops

Iteration control structures, loops, are used to repeat a block of statements until some condi-
tion is met. Two types of loops exist: the for-loop and the while-loop.

For loop

The for-loop repeats a group of statements a fixed number of times. The standard for-loop
has general syntax

for index = firstvalue:step:lastvalue

block of statements

end

The block of statements is first executed with index equal to firstvalue. After completing
the block of statements, index is increased with step and the block of statements is executed
again. Then index is increased once again with step and the block of statements is executed
again, et cetera. This process stops if index+step exceeds lastvalue. For example,

x=1:10; % whatever vector

sumx = 0;

for i=1:length(x)

sumx = sumx + x(i);

end

This adds up all elements of the vector x. Incidentally, you can specify any step, including a
negative value. Some possible variations:

for i=1:2:10

% loops over i=1,3,5,7 and 9

end

disp(i); % i=9

and

for zz=5:-1:10

% not executed at all because the loop array is empty!

end

zz % variable zz not defined

Two more examples:

for x=0:0.5:1

% should loop over x=0,0.5,1

end

Due to the finite numerical precision it may be better to replace x=0:0.5:1 with x=(0:2)/2

or x=linspace(0,1,3).

50

for x=[25 9 81]

disp(sqrt(x)); % first displays 5, then 3 and then 9

end

MATLAB has the nice feature that it can loop over matrices as well. If A is some matrix
then for c=A makes c loop over the columns of A.

>> for c=[1 2; 3 4]

c

end

c =

1

3

c =

2

4

A possibly confusing side effect of this choice is that looping over a column vector means the
loop is executed just once. Probably not what you intended.

An example how to use the loop construct to draw graphs of f (x) = cos(nx) for n = 1, . . . ,9
in different subplots is:

figure

hold on

x = linspace(0,2*pi);

for n=1:9

subplot(3,3,n);

y = cos(n*x);

plot(x,y);

axis tight

end

Given two vectors x and y, an example use of the loop construction is to create a matrix A

whose elements are defined, e.g. as Ai j = xi y j :

x = [1 2 -1 5 -7 2 4]; % whatever

y = [3 1 -5 7]; % whatever

n = length(x);

m = length(y);

for i=1:n

for j=1:m

A(i,j) = x(i) * y(j);

end

end

While loop

In a for-loop the number of times the loop is executed is fixed upon entering the loop. Quite
often we want this number of times to depend on the outcome of the commands within the
loop. In such cases we use the while-loop. A while loop evaluates a group of commands as
long as a logical expression is TRUE.

N = 100;

k = 1;

51

while (k*(k+1)) <= N

k = k + 1;

end;

It computes the smallest positive integer k for which k(k +1) exceeds N . We can create the
matrix A with entries Ai j = xi y j also with the while-loop, although for-loops are more suit-
able here:

n=length(x);

m=length(y);

i=1; % initialize i

while i<=n

j=1; % initialize j

while j<=m

A(i,j)=x(i)*y(j);

j=j+1; % increment j; it does not happen automatically in a while loop

end

i=i+1; % increment i

end

Exercise 5.10. Determine the sum of the first 50 squared numbers with a loop. ä

Exercise 5.11. Write a script that determines the largest integer n for which
p

13 +
p

23 +·· ·+p
n3 is less than 1000. ä

Exercise 5.12. Use a loop construction to carry out the computations. Write short scripts.

1. Create a script with just one loop that calculates the sum of all entries of a vector x
and also the vector of running sums. (The running sum of a vector x of n entries is the
vector of n entries defined as

[
x1 x1 +x2 x1 +x2 +x3 · · · ∑n

i=1 xi
]
.) You are not al-

lowed to use the built-in functions sum and cumsum. Test your code for x = [1 9 1 0 4].

2. Given x = [4 1 6 -1 -2 2] and y = [6 2 -7 1 5 -1], compute matrices whose ele-
ments are created according to the following formulas:

• ai j = yi /x j ;

• bi = xi yi and add up the elements of b;

• ci j = xi /(2+xi + y j);

• di j = 1/max(xi , y j).

3. Write a script that transposes a matrix A. Check its correctness with the MATLAB opera-
tion: A'.

4. Create an m-by-n array of random numbers (use rand). Move through the array, el-
ement by element, and set any value that is less than 0.5 to 0 and any value that is
greater than (or equal to) 0.5 to 1.

5. Write a script that will use the random-number generator rand to determine:

• the number of random numbers it takes to add up to 10 (or more);

• the number of random numbers it takes before a number between 0.8 and 0.85
occurs;

• the number of random numbers it takes before the mean of those numbers is
within 0.01 and 0.5.

52

It will be worthwhile to run your script several times because you are dealing with ran-
dom numbers. Can you predict any of the results that are described above?

ä

Exercise 5.13. Write a script that asks for a temperature in degrees Celsius tc and computes
the equivalent temperature in degrees Fahrenheit tf (use the formula tf=32+9/5*tc. The
script should keep on asking for a temperature until you provide an empty temperature. The
functions input and isempty (use help to learn more) should be useful here. ä

5.5 Evaluation of logical and relational expressions in the control
flow structures

The relational and logical expressions may become more complicated. It is not difficult to
operate on them if you understand how they are evaluated. To explain more details, let us
consider the following example:

if (~isempty(data)) && (max(data) < 5)

....

end

This construction of the if-block is necessary to avoid comparison if data happens to be
an empty matrix. In such a case you cannot evaluate the right logical expression and MAT-
LAB gives an error. The & operator returns 1 only if both expressions: ~isempty (data) and
max(data) < 5 are true, and 0 otherwise. When data is an empty matrix, the next expression
is not evaluated since the whole &-expression is already known to be false. The second ex-
pression is checked only if data is a non-empty matrix. Remember to put logical expression
units between brackets to avoid wrong evaluations!

Important: The fact that computers make use of floating-point arithmetic means that often
you should be careful when comparing two floating-point numbers just by:

if (x == y)

....

end

(Of course, such a construction is allowed e.g. when you know that x and y represent
integers.) Instead of the above construction, you may try using this:

if (abs (x - y) < tolerance) % e.g. tolerance = 1e-10

....

end

Exercise 5.14. Consider the following example:

max_iter = 50;

tolerance = 1e-4;

iter = 0;

x = 0.2; % some initial try

xold = cos(x);

while (abs(x-xold) > tolerance) & (iter < max_iter)

xold = x;

x = cos(xold);

iter = iter + 1;

53

end

This short program tries to solve the equation cos(x) = x.
This code is motivated by the pattern of the red curve in Fig. 5.1. Explain in words why

you expect that this code will find a solution x that satisfies cos(x) = x with small error.
Run the code for different tolerance parameters, e.g.: 1e-4 and 1e-10. Use format long

to check more precisely how much the found x is really different from cos(x).
For each tolerance values check the number of performed iterations (the value of iter)

and explain why, in general, it is a good idea to use

while (abs(x-xold) > tolerance) & (iter < max_iter)

and not just while (abs(x-xold) > tolerance). ä

Exercise 5.15. Create the script solve_cos2, which is equal to the one given, replacing the
while-loop condition by:

while (abs (x - xold) > tolerance) | (iter < max_iter)

Try to understand the difference and confirm your expectations by running solve_cos2. What
happens to iter? ä

Exercise 5.16. It is known that the Taylor series of sin(t) around zero is given by t − t 3

3! + t 5

5! +
. . .. Create a script which uses a while-loop to find the largest t f such that |sin(t)− t + t 3

3! | <
tolerance on the interval [0, t f], where tolerance is the tolerance parameter. You may only
use a maximum of max_iter iterations. ä

x

y

y = cos(x)

y = x

0
0.2 cos(0.2)

FIGURE 5.1: Finding a solution x of the equation cos(x) = x, see Exercise 5.14

54

Chapter 6

Functions

As we have seen, in MATLAB the commands can be entered at the MATLAB prompt and can
be entered into an external file called script m-file. If a problem is complicated then these two
ways become unmanageable. In that case you will want to use subprograms. In MATLAB these
are called functions. There are two ways of entering functions. Simple ones can be defined
using anonymous functions. More involved subprograms are defined in what MATLAB calls
function m-files.

6.1 Anonymous functions

An example of an anonymous function is

>> f = @(x) cos(x).*sin(2*x)

f =

@(x)cos(x).*sin(2*x)

The @ means the pointer to (or function handle of) the otherwise unnamed function that
maps x to cos(x)sin(2x). Formally then, f is not a function but a function handle. Neverthe-
less, you can evaluate the function the usual way:

>> f(-2)

ans =

-0.3149

Anonymous functions can have more than one input argument but the output must be a
single expression. For example

>> g = @(x,y) [x+y, x.*y]

g =

@(x, y) [x + y, x .* y]

This function has two inputs and one output.

>> g(3,4) % the function works for numbers

ans =

7 12

>> A = [1 2; 3 4];

>> B = [1 0; 0 1];

>> g(A,B) % the function also works for matrices

ans =

2 2 1 0

3 5 0 4

55

TABLE 6.1: Several commands that operate on functions. Here f is the function handle
of the function

Command Result

fplot(f,[minx maxx]) plots the function f (x) on [minx, maxx]
fminbnd(f,minx,maxx) returns the x for which f (x) is minimal on [minx, maxx]
fsolve(f,x0) returns the x for which f (x) is zero in the neighborhood of x0
integral(f,x0,x1) returns the integral of f (x) from x0 to x1

Now suppose we need to find a zero around x = 3 of our function f=@(x)cos(x).*sin(2*x).
In MATLAB this can be done with fsolve(f,3). The command fsolve requires the function
handle and not the entire function definition. For the same reason, if we need to find the
zero of the standard function named sin(x) near x = 3 then we should do fsolve(@sin,3)

and not fsolve(sin,3). The distinction between function and function handle plays a role
in the next section as well.

Let

f (x) = 1

(x −0.1)2 +0.1
+ 1

(x −1)2 +0.1
.

The point at which f takes its minimum is found using fminbnd. By default, the relative error
is of 1e-4. It is possible, however, to obtain a higher accuracy, by specifying an extra parameter
while calling fminbnd.

>> format long % you need this format to see the change in accuracy

>> f = @(x) 1./((x-0.1).^2 + 0.1) + 1./((x-1).^2 + 0.1);

>> fplot(f,[0 2]);

>> xm1 = fminbnd(f,0.3,1);

>> fm1 = f(xm1);

>> xm2 = fminbnd(f,0.3,1,optimset('TolX',1e-8));

>> fm2 = f(xm2);

>> [xm1, xm2] % compare the two answers

Note that format does not change the accuracy of the numbers or calculations; it just
changes the numbers of digits displayed on screen.

Exercise 6.1. Use fminbnd to find the maximum of f (x) = 1
(x−0.1)2+0.1+ 1

(x−1)2+0.1 in the interval

[0,0.5]. Choose an error tolerance such that the maximum is correct to ±10−6. If xm denotes
the computed solution, check the answer by evaluating f at xm + 10−6 and xm − 10−6. The
values should be smaller at both these neighboring points. Hint: there is no function fmaxbnd.
Find the minimum of − f (x), instead. ä

Exercise 6.2. Determine the maximum of the function f (x) = x cos(x) over the interval 10 <
x < 15, and use fplot to plot the function. ä

Exercise 6.3. Find the zero, i.e x0, of the functions f (x) = cos(x) and g (x) = sin(2x) around
the point 2. Use a command from Table 6.1. Check that the values are approximately zero for
x0 and the signs of f at x0 ±10−4. ä

Statements like

a=10;

g=@(x,y)sin(a.*x.*y);

a=pi;

56

are allowed and it defines g (x, y) = sin(10x y). The variable a used in the definition of g is not
in the argument list (x,y). In that case the current value of a=10 is substituted. Changing a

to a=pi afterwards has no effect on g (x, y).

Exercise 6.4. Explain the outcome of the following command f=@(x)(@(y)y.^2.*x); and
test it with h=f(2), h(10), x=5; h(10). ä

For the function f defined in the last exercise, the command f(2)(10) generates an error
in MATLAB. In the MATLAB look-alike GNU OCTAVE it is allowed and it does what you expect.

Exercise 6.5. Define a function f such that f (n) is the integral from 0 to 1 of the function
t n . (You must use the command integral and your definition of f must use only one line of
MATLAB.) ä

6.2 Function m-file

Functions m-files are true subprograms, and they can take input parameters and/or return
output parameters. They can call other functions as well. Here is an example of a function
m-file:

function [avr,sd] = stat(x)

%STAT Simple statistics.

% Computes the average value and the standard deviation of a vector

%Version December 2001. Author: St. Nicholas

n = length(x);

avr = sum(x)/n;

sd = sqrt(sum((x - avr).^2)/n);

return; % this is optional

Once saved as stat.m somewhere in your path, you can call this function:

>> x=1:5;

>> [a,s]=stat(x) % compute average and standard deviation of x

a =

3

s =

1.4142

>> b=stat(x) % if we only need the first output (average)

b =

3

The general syntax of a function is:

function [outputArgs] = function_name(inputArgs)

Here outputArgs are enclosed in [] and they are a comma-separated list of variable names.
The brackets [] are optional if there is only one output argument. Functions without output
arguments are also allowed, as in

function function_name(inputArgs)

In other programming languages, functions without output arguments are called procedures.
The inputArgs are enclosed in parentheses () and they are a comma-separated list of vari-
able names. Functions without inputArgs are also allowed.

57

The first line of the m-file should be the definition of the function (also called a header)
that we talked about: function [outputArgs] = function_name (inputArgs). After that, a
continuous sequence of comment lines should appear. In this part it is explained what the
function does. Not only a general description, but also the expected input parameters, re-
turned output parameters and synopsis should be documented there. These comment lines
(counted up to the first non-comment line) are important since they are displayed in response
to the help command. Finally, the remainder of the function is called the body. Function m-
files terminate execution and return when they reached the end of the file or, alternatively,
when the command return is encountered. As an example, the function average is defined
as follows:

function avr = average (x)

%AVERAGE computes the average value of a vector

%SYNTAX: avr=average(x)

%Note to self: this is a boring function

n = length(x);

avr = sum(x)/n;

return;

?

function name

�����)

input argument
@@R

output argument

XXz

the first word
must be “function” comments

function body

comments following a blank line
are NOT shown if you type:
>> help average

�

Important: The name of the function and the name of the file stored on disk must be iden-
tical. In our case, the function must be stored in a file called average.m.

Exercise 6.6. Create the function average and save it on disk as average.m. Remember about
the comment lines. Check its usability by calling help average and then test the function by
typing avr1=average(1:4). Verify the result. ä

Warning: The functions mean and std already exist in MATLAB. As long as a function name
is used as variable name, MATLAB can not perform the function. Many other, easily appealing
names, such as sum or prod are reserved by MATLAB functions, so be careful when choosing
your names (see Section 13.3).

The return statement can be used to force an early return. An exemplary use of the
return is given below:

function d = determinant(A)

%DETERMINANT Computes the determinant of a matrix

[m,n] = size(A);

if (m ~= n)

disp ('Error. Matrix should be square.');

return;

else

d = det(A); % standard Matlab function

end

return; % this is optional

Analyze the use of the return command in the function checkarg, which is presented in
Section 6.4 as well.

58

When controlling the proper use of parameters, the function error may become useful. It
displays an error message, aborts function execution, and returns to the command environ-
ment. Here is an example:

if (a >= 1)

error ('a must be smaller than 1');

end

Change some scripts that you created into functions, e.g. create the function drag, com-
puting the drag coefficient (see Section 5.3), or solve_cos (see Section 5.5) or cubic_roots

(see Section 1.7).

Exercise 6.7. Write the function [elems, mns] = nonzero(A) that takes as input a matrix
A and returns all nonzero elements of A in the vector elems and returns the means of all
columns in the vector mns. Test your function with the commands below and explain the
outcome:

>> A=[1 0 0; 2 3 4]

>> [eee,mmm]=nonzero(A)

>> nonzero(A)

>> ee=nonzero(A)

>> [~,mm]=nonzero(A)

ä

Exercise 6.8. Create the function [A,B,C] = sides(a,b,c) that takes three positive numbers
a, b and c. If they are sides of a triangle, then the function returns its angles A, B and C,
measured in degrees. Display an error when necessary. ä

Exercise 6.9. The area of a triangle with sides of length a, b, and c is A =p
s(s −a)(s −b)(s − c),

where s = (a+b+c)/2. Write a function that accepts a, b and c as inputs and returns the area
A as output. Note that the sides should be non-negative and should fulfil the triangle inequal-
ities: a ≤ b + c;b ≤ a + c;c ≤ a +b. Make use of the error command. ä

Exercise 6.10. Create the function myrandint that randomly generates a matrix of integer
numbers (use the command rand). These integers should come from the interval [a,b]. Exer-
cise in documenting the function. Use the following function header:

function r = myrandint(m,n,a,b) % a m-by-n matrix

If this seems too difficult, start first with the fixed interval, e.g. [a,b] = [0,5] (and remove a

and b from the function definition) and than try to make it work for an arbitrary interval. ä

6.3 Subfunctions

A function m-file may contain more than one function. The function appearing first in the
m-file is the primary function and only this one can be called directly by the user. Other
functions are subfunctions and can be called from within the m-file. So, they are invisible
from outside the file. A subfunction is created by defining a new function with the function

statement after the body of the preceding function. The use of subfunctions is recommended
to keep the function readable when it becomes too long or too complicated. For example, in
the code below, average is now a subfunction within the file stat.m:

function [a,sd] = stat(x)

%STAT Simple statistics.

59

% Computes the average and standard deviation of a vector

n = length(x);

a = average(x,n);

sd = sqrt(sum((x - avr).^2)/n);

return;

function a = average (x,n)

%AVERAGE subfunction

a = sum(x)/n;

return;

6.4 Special function variables

Each function has two internal variables: nargin — the number of function input arguments
that were used to call the function and nargout — the number of output arguments. Analyze
the following function:

function [out1,out2] = checkarg (in1,in2,in3)

%CHECKARG Demo on using the nargin and nargout variables.

if (nargin == 0)

disp('no input arguments');

return;

elseif (nargin == 1)

s = in1;

p = in1;

disp('1 input argument');

elseif (nargin == 2)

s = in1+in2;

p = in1*in2;

disp('2 input arguments');

elseif (nargin == 3)

s = in1+in2+in3;

p = in1*in2*in3;

disp('3 input arguments');

else

error('Too many inputs.');

end

if (nargout == 0)

return;

elseif (nargout == 1)

out1 = s;

else

out1 = s;

out2 = p;

end

Exercise 6.11. Read the above function checkarg and explain what will happen if you type

>> checkarg

>> s = checkarg(-6)

>> s = checkarg(23,7)

>> [s,p] = checkarg(3,4,5)

ä

60

6.5 Local and global variables

Each m-file function has access to a part of memory separate from MATLAB’s workspace.
This is called the function workspace. This means that each m-file function has its own lo-
cal variables, which are separate from those of other functions and from the variables in the
workspace. To understand it better consider a function myfun

function z = myfun (x,y)

x = 2*x;

z = x+y;

and that we call this function from the command window with

>> x = 100;

>> a = -1;

>> b = 20;

>> c = myfun(a,b) % c = 2a +b

Now in the MATLAB workspace, variables a, b, c and x are available, and x equals 100. The
variables y and z are visible only within the function myfun and the same is true for the vari-
able x used in myfun. It is completely separate from the x defined in the Command Window.
The fact that they share the same name is irrelevant. Upon executing myfun(a,b) the current
values of a, b are copied to the local variables x, y. Doubling the local variable, x=2*x, in the
function then has no effect on a.

An definite advantage of local variables is that we, as a user of functions, need not worry
about the variable names defined in the function. They are completely independent. Some-
times this is a drawback, though, because each time we call a function, the values of the input
arguments are copied to the local variables. Now imagine copying a 10000×10000 matrix a
number of times. Then it might be an idea to declare the data as global. It should be declared
global in every function or script that needs the data. See help global. Any assignment to a
global variable is available to all other functions and/or the workspace. However, you should
be careful when using global variables. It is very easy to get confused and end up with serious
errors.

Exercise 6.12. Make the function iprod as follows

function z = iprod(n)

i=10;

z=i*n;

Then in the command window do

>> z=-1000;

>> x=iprod(3)

and afterwards display the values of x,z,n and i from the Command Window. Explain the
outcome. ä

6.6 Passing functions to functions

We can pass functions to functions, that is, the input argument of a function may itself be a
function. A function handle to be precise. We have seen examples of this already when we
used fsolve to find a zero of a function.

61

Exercise 6.13. Download the function funplot from the course website (it is the function
given below) and test it and try to understand how it works.

function funplot (F, xstart, xend, col);

%FUNPLOT makes an embellished plot of a function on an interval.

%SYNTAX: funplot(@F,xstart,xend,col)

% It plots a function F on interval [xstart,xend] in color 'col'.

% 'col' is one of the following: 'b','k','m','g','w','y' or 'r'.

%Default values:

% [xstart,xend] = [0,10]

% col = 'b'

% Note: illustrates the use of passing function (handles) to functions

if (nargin == 0)

error ('No function is provided.');

end

if (nargin < 2)

xstart = 0;

xend = 10;

end

if (nargin == 2)

error ('Wrong number of arguments. You should provide xstart and xend.');

end

if (nargin < 4)

col = 'b';

end

if (xstart == xend),

error ('The [xstart, xend] should be a non-zero range.');

elseif (xstart > xend),

exchange = xend;

xend = xstart;

xstart = exchange;

end

switch col

case {'b','k','m','g','w','y','r'}

; % do nothing; the right color choice

otherwise

error ('Wrong col value provided.')

end

x = linspace(xstart, xend,1000); % choice of 1000 is arbitrary

plot (x,F(x),col);

fstring=func2str(F);

description = ['Plot of ',fstring];

title (description);

Note the use of comments, the nargin variable and the switch-construction. Call funplot for
different built-in functions, like sin, exp, etc. Test it for your own functions as well. Write for
example a function myfun that computes sin(x cos(x)) or log(|x sin(x)|). Explain why it would
be wrong to use the fragment given below instead of its equivalent part in funplot.

if nargin < 2

xstart = 0;

xend = 10;

62

elseif nargin < 3

error ('Wrong number of arguments. You should provide xstart and xend.');

elseif nargin < 4

col = 'b';

end

ä

6.7 Scripts vs. functions vs. anonymous functions

The most important difference between a script m-file and a function m-file is that all param-
eters and variables in a script are externally accessible (i.e. are available in the workspace),
while function variables are not. Therefore, a script is a good tool for documenting work, de-
signing experiments and testing for given parameters. But you will want to create function
m-files to solve a problem for arbitrary parameters. Use a script to run functions for specific
parameters required by the assignment. Anonymous functions should only be used for sim-
ple functions. Recall that anonymous functions are actually function handles. The function
handle of a function m-file, say, stat.m is @stat.

Exercise 6.14. Create the function binom that computes the value of the binomial symbol(n
k

)
. Make the function header: function b = binom (n,k). Note that in order to write this

function, you will have to create the factorial function, which computes the value of n! =
1×2×·· ·×n. This may become a separate function (enclosed in a new file) or a subfunction
in the binom.m file.

Try to implement both cases if you got acquainted with the notion of a subfunction. Hav-
ing created the binom function, write a script that displays on screen all the binomial symbols
for n = 8 and k = 1,2, ...,8 or write a script that displays on screen the following ’triangle’:(1

1

)(2
1

) (2
2

)(3
1

) (3
2

) (3
3

)(4
1

) (4
2

) (4
3

) (4
4

)
ä

Exercise 6.15. Solve the following exercises by using either a script or a function. The na-
ture of the input/output and display options is left to you. Problems are presented with the
increasing difficulty; start simple and add complexity. If possible, try to solve all of them.

1. Write a function with as input a vector x and as output the cumulative product of this x.
The cumulative product of a vector x of n elements is the vector of n elements defined
as [

x1 x1x2 x1x2x3 · · · ∏n
i=1 xi

]
.

Make your code as simple as possible. You are not allowed to use the built-in function
cumprod but it might be useful to check your code.

2. Write a MATLAB function wmean with syntax m=wmean(x,w) that returns the weighted

arithmetic mean m =
∑n

i=1 xi wi∑n
i=1 wi

of two vectors x and w of length n. Add error messages

to terminate execution of the function if:

• x and w have different length,

63

• at least one element of w is negative,

• all weights wi are equal to zero.

3. Compute the value of π using the following series:

π2 −8

16
=

∞∑
n=1

1

(2n −1)2(2n +1)2

How many terms are needed to obtain an accuracy of 1e-12? How accurate is the sum
of 100 terms?

4. Write a program that approximates π by computing the sum:

π

4
≈

m∑
n=0

(−1)n

2n +1

The more terms in summation the larger the accuracy (although this is not an efficient
formula, since you add and subtract numbers). How many terms are needed to approx-
imate π with 5 decimals? Use the sum to approximate π using 10, 100, 1e3, 1e4, 5e4,
1e5, 5e5 and 1e6 terms. For each of these numbers compute the approximation error.
Plot the error as a function of the term numbers used in a summation.

5. The Fibonacci numbers are computed according to the following relation:

Fn = Fn−1 +Fn−2, with F0 = F1 = 1

• Compute the first 10 Fibonacci numbers.

• For the first 50 Fibonacci numbers, compute the ratio Fn
Fn−1

. It is claimed that this

ratio approaches the value of the golden mean 1+
p

5
2 . What do your results show?

6. Consider a problem of computing the n-th Fibonacci number. Find three different ways
to implement this and construct three different functions, say fib1, fib2 and fib3.
Measure the execution time of each function (use the commands tic and toc) for, say,
n = 20,40 or 100.

7. Collatz conjecture. Write a script that asks for a positive integer n (or a function that has
n as the input argument) and then computes the following: if n is even then divide it
by two: n := n/2 and if n is odd, then triple it and add one: n := 3n +1 and repeat this
procedure until n equals 1. Make provision to count the number of values in (or the
length of) the sequence that results.

Example calculation: If n = 10, the sequence of integers is 5,16,8,4,2,1, so the length is
6.

Make a plot of the length of the sequence that occurs as a function of the integers from
2 to 30. For example, when n = 10, the length is 6 while for n = 15, the length is 17. Is
there any pattern? Try larger numbers to see if any pattern occurs. Is there any integer
for which the sequence does not terminate?

The Collatz conjecture is that for every n we eventually reach 1 so eventually the proce-
dure ends. This is quite remarkable since even numbers are halved while all odd num-
bers are more than tripled. The conjecture is open for more than 70 years now. You will
be instantly famous if you can prove or falsify the conjecture.

8. Provide all prime numbers that are smaller than the given number n.

ä

64

FIGURE 6.1: The Droste effect. The woman holds an object bearing a smaller image of
her holding the same object, which in turn bears a smaller image of her holding the
same object, and so on [wikipedia]. This is an example of recursion, see § 6.8

6.8 Recursion

Recursion is best explained on an example. Consider the function below

function m=myfactorial(n)

% myfactorial(n) computes the factorial of nonnegative integer n

if n==0

m=1;

else

m=n*myfactorial(n-1);

end

This function calls itself! What happens if we do myfactorial(4). This:

• myfactorial(4) calls myfactorial(3)

• then myfactorial(3) calls myfactorial(2)

• then myfactorial(2) calls myfactorial(1)

• then myfactorial(1) calls myfactorial(0)

• then myfactorial(0) returns the value m = 1

• now myfactorial(1) receives this value 1 and returns m = 1×1 = 1

• now myfactorial(2) receives this value 1 and returns m = 2×1 = 2

• now myfactorial(3) receives this value 2 and returns m = 3×2 = 6

65

• finally myfactorial(4) receives this value 6 and returns m = 4×6 = 24. Ready.

We computed the factorial of 4. The process of functions calling themselves is known as re-
cursion. For factorials recursion is overkill, but many problems can be neatly and elegantly
solved with recursion. A famous application of recursion is the quicksort algorithm to sort a
list of items, say an array of numbers. A pseudo-code of this algorithm is:

ALGORITHM quicksort

INPUT: vector S

OUTPUT: sorted vector

IF S contains just one element or is empty

return S

ELSE

choose whatever element A of S

let S1 be the subset of S of elements less than A

let S2 be the subset of S of elements equal to A

let S3 be the subset of S of elements larger than A

return the vector [quicksort(S1), S2, quicksort(S3)]

END

Exercise 6.16. Write a function quicksort.m that sorts an arbitrary vector of real numbers,
based on the above pseudo-code.

Test your quicksort on quicksort([5 3 3 4 -1 100]), and explain why your quicksort
routine always returns an anwer (i.e. that the number of recursions for each input is finite). ä

Exercise 6.17. The Legendre polynomials Pn(x) are defined by the following recurrence rela-
tion:

(n +1)Pn+1(x)− (2n +1)xPn(x)+nPn−1(x) = 0

with P0(x) = 1, P1(x) = x and P2(x) = (3x2 −1)/2. Compute the next 3 Legendre polynomials
and plot all 6 over the interval [−1,1]. ä

66

Chapter 7

Numerical analysis

Numerical analysis can be used whenever it is impossible or difficult to determine the analyt-
ical solution. MATLAB can be used to find, for example, the minimum, maximum or integral
of a function. In this chapter we briefly introduce some of the many numerical routines in
MATLAB.

There are two basic ways to model data with analytical functions:

• curve fitting or regression; finding a smooth curve that best fits (approximates) the data
according to a criterion (e.g. best least square fit1). The curve does not have to go
through any of the data points.

• interpolation; the data are assumed to be correct, desired in a way to describe what
happens between the data points. In other words, given a finite set of points, the goal
of interpolation is to find a function from a given class of functions (e.g. polynomials)
which passes through the specified points.

The figure below illustrates the difference between regression (curve fitting) and interpo-
lation:

−5 0 5
−8

−6

−4

−2

0

2

4

6

8

10

interpolation
fitting a 3D polynomial

7.1 Curve fitting

MATLAB interprets the best fit of a curve by the “least squares curve fitting”. The curve used
is restricted to polynomials. With the command polyfit any polynomial can be fitted to the

1That is a famous application in linear algebra. For sure you will learn about this method one day.

67

data. pc=polyfit(x,y,n) finds the coefficients of a polynomial p(t) of degree n that fits the
data (xi , yi) best in least-squares sense. Let’s start with finding a linear regression (first order
polynomial) of some data:

>> x = 0:10;

>> y = [-.10 .24 1.02 1.58 2.84 2.76 2.99 4.05 4.83 5.22 7.51];

>> pc = polyfit(x,y,1); % find the fitting [pc(1) pc(2)] of order 1

>> p=@(x) polyval(pc,x); % define polynomial p(x)=pc(1)x+pc(2)

The output of polyfit is a row vector of the polynomial coefficients [.67718 -.39136], the
solution of this example is p(x) = .67718x − .39136.

Exercise 7.1. Execute the above example. Plot the data and the fitted curve in a figure. De-
termine the 2nd and 9th order polynomial of these data as well, and display the solution in
a figure. Hint: with the command x1 = linspace(xmin,xmax,n); you make a vector with n

elements evenly distributed from xmin till xmax. y1 = polyval(p,x1); is the vector of values
of the polynomial evaluated at the elements of x1. ä

Exercise 7.2. Define x and y as follows:

>> x = -5:5;

>> y = 0.2*x.^3 - x + 2; % a 3rd order polynomial

>> y = y + randn(1,11); % add some noise to y

Determine the 3rd order polynomial p(x) fitting y (note that because of added noise the co-
efficients are different than originally chosen). Try some other polynomials as well. Plot the
results in a figure. ä

7.2 Interpolation

The simplest way to examine an interpolation is by displaying the function plots with the
command plot. The neighboring data points are connected with straight lines. This is called
a linear interpolation. When more data-points are taken into account the effect of interpola-
tion becomes less visible. Analyze:

>> x1 = linspace(0,2*pi,2);

>> x2 = linspace(0,2*pi,4);

>> x3 = linspace(0,2*pi,16);

>> x4 = linspace(0,2*pi,256);

>> plot(x1,sin(x1),x2,sin(x2),x3,sin(x3),x4,sin(x4))

>> legend('2 points','4 points','16 points','256 points')

There exist also MATLAB functions that interpolate between points, e.g. interp1 or spline,
as a 1D interpolation and interp2, as a 2D interpolation. Perform the following commands:

>> N = 50;

>> x = linspace(0,5,N);

>> y = sin(x) .*sin(6*x);

>> subplot(2,1,1); plot(x,y);

>> hold on

>> p = randperm(N);

>> pp = p(1:round(N/2)); % choose randomly N/2 indices of points from p

>> pp = sort(pp); % sort the indices

>> xx = x(pp); % select the points

>> yy = y(pp);

>> plot(xx,yy,'ro-') % this is a 'coarse' version

68

>> yn = interp1(xx,yy,x,'nearest');

% nearest neighbor interpolation on all x points

>> plot(x,yn,'g')

>> axis tight

>> legend('Original','Crude version','Nearest neighbor interpolation')

>>

>> subplot(2,1,2); plot(xx,yy,'ro-');

>> hold on

>> yc = interp1(xx,yy,x,'linear');

% linear interpolation on all x points

>> plot(x,yc,'g')

>> ys = spline(xx,yy,x); % spline interpolation

>> plot(x,ys,'k')

>> axis tight

>> legend('Crude version','Linear interpolation','Spline interpolation')

You can also see a coarse approximation of the function peaks:

>> [X,Y,Z] = peaks(10);

>> [Xi,Yi] = meshgrid(-3:.25:3,-3:.25:3);

>> Zi = interp2(X,Y,Z,Xi,Yi);

>> mesh(Xi,Yi,Zi);

7.3 Evaluation of functions

As said before, the command plot plots a function by connecting defined data points. If
a function is constant and not very interesting over some range and then changes abruptly
over another, then it might be misinterpreted by using plot. The command fplot is then
more useful. An example is:

>> x = 0:pi/8:2*pi;

>> y=@(x) sin(8*x);

>> plot(x,y(x),'b')

>> hold on

>> fplot(y,[0 2*pi],'r')

>> title('sin(8*z)')

>> hold off

Execution of these commands results in a figure with an almost straight blue line and a red
sine.

7.4 Integration and differentiation

The integral, or the surface underneath a 2D function, can be determined with the command
trapz. trapz does this by measuring the surface between the x-axis and the data points, con-
nected by the straight lines. The accuracy of this method depends on the distance between
the data points:

>> x = 0:0.5:10;

>> y = 0.5 * sqrt(x) + x .* sin(x);

>> integral1 = trapz(x,y)

integral1 =

18.1655

69

>> x = 0:0.05:10;

>> y = 0.5 * sqrt(x) + x .* sin(x);

>> integral2 = trapz(x,y)

integral2 =

18.3846

A more accurate result can be obtained by using the command integral, which also nu-
merically evaluate an integral of the function f . Let f = 1

(x−0.1)2+0.1 + 1
(x−1)2+0.1 .

>> f = @(x) 1./((x-0.1).^2 + 0.1) + 1./((x-1).^2 + 0.1);

>> integral1 = integral(f,0,2)

>> integral2 = integral(f,0,2)

You can also add an extra parameter to integral specifying the accuracy.

Exercise 7.3. Find the integral of the function f (x) = e−x2/2 over the interval [−3,3]. Exercise
with different MATLAB commands and different accuracy. ä

Differentiation is done by determining the slope in each data point. A somewhat simplis-
tic way to do this numerically is by first fitting a polynomial, followed by differentiating this
polynomial:

>> x = 0:10;

>> y = [-.10 .24 1.02 -1.58 2.84 2.76 7.75 .35 4.83 5.22 7.51];

>> p = polyfit(x,y,5)

p =

0.0026 -0.0554 0.3634 -0.6888 0.2747 0.0877

>> dp = polyder(p)

dp =

0.0132 -0.2216 1.0903 -1.3776 0.2747

>> x1 = linspace(0,10,200);

>> z = polyval(p,x1);

>> dz = polyval(dp,x1);

>> plot(x,y,'g.-',x1,z,'b',x1,dz,'r:')

>> legend('data points','curve fit','derivative')

Exercise 7.4. Determine the integral and derivative of the degree 4 polynomial fitted through
(x,y) with y=[12.84 12.00 7.24 -0.96 -11.16 -20.96 -27.00 -24.96 -9.56 25.44] and
x=4:13. ä

7.5 Numerical computations and the control flow structures

Take a look at the problem of a Taylor expansion. The series will be determined numerically
until the additional terms are smaller than a defined precision. Look at the Taylor expansion
of

1

1−x
= 1+x +x2 +x3 + . . .

with x = 0.42:

s = 0; x = 1; s = 0; x = 1;

x0 = 0.42; x0 = 0.42;

while (x > 1e-6) while (x > (1e-6)*s)

s = s + x; s = s + x;

x = x * x0; x = x * x0;

end end

70

The approximation of 1
1−x is returned in s (for sum). In the first case (on the left), the

iteration process is stopped as soon as the next term t is smaller than an absolute value of
1e-6. In the other case, this value is relative to the outcome.

Exercise 7.5. Find the Taylor expansion of 1
1−x and sin(x) = x − x3

3! + x5

5! − . . . with the absolute
precision of 1e-5 for x = 0.4 and x =−0.4. ä

It is also possible to determine the Taylor expansion of 1
1−x = 1+ x + x2 + . . . with 30 terms

(x = 0.42):

s = 1; x = 1; s = 1; x = 1; x0 = 0.42;

x0 = 0.42; n1 = 1; n2 = 30;

n = 30; step = 1;

for k = 1:n for k = n1:step:n2

x = x * x0; x = x * x0;

s = s + x; s = s + x;

end end

showing that the index k can be indicated with a starting point, step size and end point.

7.6 Numerical solution of differential equations

Suppose that x :R→R is a function that satisfies the differential equation

x ′(t) =−x(t)/3

with initial condition x(0) = 2. It is easy to verify that the solution of this differential equation
is x(t) = 2e−t/3. In most cases we can not explicitly solve the differential equation. In MAT-
LAB however we can simulate (approximate) the solution using Euler’s method and fancier
variations. To simulate the solution x(t) of

x ′(t) = f (t , x(t))

given x(0) we can do the following.

f=@(t,x) -t*x; % here we took f (t , x(t)) =−t x(t)
tspan=[0 10]; % time interval over which to solve x(t)
x0=1; % an initial condition

[t,x]=ode45(f,tspan,x0); % do the simulation (determine t , x(t))
plot(t,x); % x is of the same length as t

Exercise 7.6. Determine the solution of x ′(t) = −x(t)/3, x(0) = 2 using the above ode45 and
compare the outcome with the exact solution x(t) = 2e−t/3. ä

In the above examples the order of the differential equation (the highest order derivative)
is one. In that case only one number x(0) is required to uniquely determine the solution of
the differential equation. In applications the order is often higher. In that case you should
rewrite the differential equation in vector form

x ′(t) = f (t , x(t)).

For example, the pendulum—see Fig. 7.1 on page 72—is described by the second order dif-
ferential equation

m`φ′′(t)+mg sin(φ(t)) = 0

71

in the angle φ(t). With the choice

x(t) :=
[

x1(t)
x2(t)

]
:=

[
φ(t)
φ′(t)

]
this second order pendulum equation becomes a vector valued first order equation,[

x ′
1(t)

x ′
2(t)

]
=

[
x2(t)

− g
` sin(x1(t))

]
.

In this form we can simulate the solution. All we need is an initial condition of the vector x

at time zero, x(0) =
[

x1(0)
x2(0)

]
. For the rest the method is the same as for the previous case:

g=9.8;

el=1;

f=@(t,x) [x(2); -g/el*sin(x(1))]; % define f (t , x) (a column with 2 entries)

x0=[1;0]; % initial condition (column)

tspan=[0 10]; % as before

[t,x]=ode45(f,tspan,x0); % as before

plot(t,x); % x is of the same length as t

Exercise 7.7. Solve the coupled differential equation[
x ′

1(t)
x ′

2(t)

]
=

[−0.1x1(t)−x2(t)
x1(t)−0.1x2(t)

]
with initial condition x1(0) = 1 and x2(0) = 0 over time t ∈ [0,50]. Plot both x1, x2 as a function
of time, but also plot x2 against x1. (Hint: do whos t x to see what t and x are.) ä

φ

m

ℓ

FIGURE 7.1: The pendulum

72

Chapter 8

Text

Although MATLAB is mainly designed to be efficient with numbers, it may be necessary to
operate on text, as well. Text is saved as a character string.

8.1 Character strings

The string is a vector of ASCII values which are displayed as their character string represen-
tation. Since text is a vector of characters, it can be addressed in the same way as any vector.
An example:

>> t = 'This is a character string'

t =

This is a character string

>> size(t)

ans =

1 26

>> whos

Name Size Bytes Class

t 1x26 52 char array

>> t(10:19)

ans =

character

>> t([2,3,10,17])

ans =

hi t

To see the underlying ASCII representation, the string has to be converted using the com-
mand double or abs:

>> double(t(1:12))

ans =

84 104 105 115 32 105 115 32 97 32 99 104

The function char provides the reverse transformation:

>> t([16:17])

ans =

ct

>> t([16:17])+3 % it is transformed to ASCII code

ans = % if mathematical operations are used

102 119

>> t([16:17])-3 % ASCII codes again

ans =

73

96 113

>> char(t([16:17])-2) % transform ASCII codes to characters

ans =

ar

Exercise 8.1. Use string t = 'This is a character string' to form a new string u that
contains the word ’character’ only. Convert string u to form the same word spelled backwards,
i.e. u1 = 'retcarahc'. ä

Using, e.g. findstr, a string can be searched for a character or a combination of charac-
ters. Some examples on the use of different string functions are given below:

>> findstr(t, 'c') % finds a 'c' in string t; positions are returned

ans =

11 16

>> findstr(t, 'racter') % finds the beginning of a string 'racter' in t

ans =

14

>> findstr(t,u) % finds string u in string t; returns the position

ans =

11

>> strcat(u,u1) % concatenates multiple strings: u and u1

ans =

characterretcarahc

>> strcmp(u,u1) % comparison of two strings;

ans = % 1 for identical strings; 0 for different strings

0

>> q = num2str(34.35) % converts a number into a string

q =

34.35

>> z = str2num('7.6') % converts a string into a number

z =

7.6

>> whos q z % q is a string (a character array); z is a number

Name Size Bytes Class

q 1x5 10 char array

z 1x1 8 double array

>> t = str2num('1 -7 2') % converts a string into a vector of number

t =

1 -7 2

>> t = str2num('1 - 7 2') % here spaces around the sign - or + are important!

t = % performs: [1-7, 2]

-6 2

>> A = round(4*rand(3,3))+0.5;

>> ss = num2str(A) % A is random: you will get different numbers here

ss =

-3.5 -3.5 6.5

-2.5 -1.5 0.5

5.5 -1.5 -3.5

>> whos ss

Name Size Bytes Class

ss 3x28 168 char array

>> ss(2,1), ss(3,15:28) % ss is a char array

ans =

-

ans =

.5 -3.5

74

>> ss(1:2,1:3)

ans =

-3.

-2.

You can get acquainted with other functions operating on character strings. These are
listed by calling help strfun.

Exercise 8.2. Perform the commands shown in the example above. Define another string,
such as s = 'Nothing wastes more energy than worrying' and exercise with findstr. ä

Exercise 8.3. Become familiar with the commands: num2str and str2num. Check e.g. what
happens with ss = num2str([1 2 3; 4 5 6]) or q = str2num('1 3.25; 5 5.5'). Analyze
also the commands str2double and int2str (use help to get more information). ä

8.2 Text input and output

The input command can be used to prompt (ask) the user for numeric or string input:

>> myname = input('Enter your name: ','s');

>> age = input('Enter your age: ');

You have learned in Section 6.2 that inputs can be passed on to functions. This is a rec-
ommended approach, since using the input command for more complex programs makes
automatic computation impossible.

There are two common text output functions: disp and fprintf. The disp function only
displays the value of one parameter, either a numerical array or a string (the recognition is
done automatically). For example:

>> disp('This is a statement.') % a string

This is a statement.

>> disp(rand(3)) % a matrix

0.2221 0.0129 0.8519

0.4885 0.0538 0.5039

0.2290 0.3949 0.4239

The fprintf function (familiar to C programmers) is useful for writing data to a file (see
Section 12.1) or printing on screen when precise formatting is important. Try, for instance (an
explanation will follow):

>> x = 2;

>> fprintf('Square root of %g is %8.6f.\n', x, sqrt(x));

Square root of 2 is 1.414214.

>> str = 'beginning';

>> fprintf('Every %s is difficult.\n',str);

Every beginning is difficult.

Formally, fprintf converts, formats and prints its arguments to a file or displays them on
screen according to a format specification. For displaying on screen, the following syntax is
used:

fprintf (format,a,...)

The format string contains ordinary characters, which are copied to the output, and con-
version specifications, each of which converts and prints the next successive argument to

75

fprintf. Each conversion specification is introduced by the character % and ended by a con-
version character. Between the % and the conversion character there may appear:

• a minus sign; controlling the alignment within the field defined.

• a digit string specifying a minimum field length; The converted number will be printed
in a field at least this wide, and wider if necessary.

• a period which separates the field width from the next digit string;

• a digit string — the precision which specifies the maximum number of characters to be
printed from a string or the number of digits printed after decimal point of a single or
double type.

Format specification is given below in terms of the conversion characters and their mean-
ings:

The argument
d is converted into decimal notation;
u is converted into unsigned decimal notation;
c is taken to be a single character;
s is a string;
e is taken to be a single or double and converted into decimal notation of

the form: [-]m.nnnnnnE[±]xx, where the length of n’s is specified by the precision;
f is taken to be a single or double and converted into decimal notation of

the form:[-]mmm.nnnnn, where the length of n’s is specified by the precision;
g is specified by e or f, whichever is shorter; non-significant zeros are not printed;

The special formats n, r, t, b+ can be used to produce next line (i.e. makes sure that the
next command or output will be written on the next line), carriage return, tab, and backspace
respectively. Use \\ to produce a backslash character and %% to produce the percent character.

Analyze the following example:

>> fprintf('look at %20.6e!\n', 1000*sqrt(2))

look at 1.414214e+3!

>> fprintf('look at %-20.6f!', 1000*sqrt(2))

look at 1414.213562 ! >>

For both commands, the minimum field length is 20 and the number of digits after the
decimal point is 6. In the first case, the value of 1000*sqrt(2) is padded on the right, in the
second case, because of the “-”, it appears on the left. The difference in the presentation is
caused by the conversion characters e and f .

Exercise 8.4. Try to exercise to understand how to use the input, disp and fprintf com-
mands. For instance, try to read a vector with real numbers using input. Then, try to display
this vector, both by calling disp and formatting an output by fprintf. Make a few variations.
Try the same with a string. ä

Exercise 8.5. Study the following examples in order to become familiar with the fprintf pos-
sibilities and exercise yourself to understand how to use these specifications:

>> str = 'life is beautiful';

>> fprintf('My sentence is: %s\n',str); % note the \n format

My sentence is: life is beautiful

>> fprintf('My sentence is: %30s\n',str);

My sentence is: life is beautiful

76

>> fprintf('My sentence is: %30.10s\n',str);

My sentence is: life is be

>> fprintf('My sentence is: %-20.10s\n',str);

My sentence is: life is be

>>

>> name = 'John';

>> age = 30;

>> salary = 6130.50;

>> fprintf('My name is %4s. I am %2d. My salary is %7.2f euro.\n',name, age, salary);

My name is John. I am 30. My salary is 6130.50 euro.

>>

>> x = [0, 0.5, 1];

>> y = [x; exp(x)] % y has two rows and three columns

y =

0 0.5000 1.0000

1.0000 1.6487 2.7183

>> fprintf('%6.2f %12.8f\n',y); % but now it is transposed! (see below)

0.00 1.00000000

0.50 1.64872127

1.00 2.71828183

>>

>> fprintf('%6.1e %12.4e\n',y);

0.0e+00 1.0000e+00

5.0e-01 1.6487e+00

1.0e+00 2.7183e+00

>>

>> x = 1:3:7;

>> y = [x; sin(x)];

>> fprintf('%2d %10.4g\n',y);

1 0.8415

4 -0.7568

7 0.657

ä

Warning: fprintf uses its first argument to decide how many arguments follow and what
their types are. If you provide a wrong type or there are not enough arguments, you will get
nonsense for an answers. So, be careful with formatting your output. Look, e.g., what happens
in the following case (age is not provided):

>> fprintf('My name is %4s. I am %2d. My salary is %7.2f euro.\n',name,salary);

My name is John. I am 6.130500e+03. My salary is >>

The command fprintf when given a matrix as argument reads the elements of this matrix
columnwise! Invoking fprintf('%6.2f %12.8fn',y) as above keeps on reading groups of 2
elements of this matrix until all elements are read. Since here y is a 2×3 matrix it can do this
three times. This is why the result has three rows instead of two.

Remark: The function sprintf is related to fprintf, but writes to a string instead. Analyze
the example:

>> str=sprintf('My name is %4s. I am %2d. My salary is %7.2f euro.\n',name,age,salary)

str =

My name is John. I am 30. My salary is 6130.50 euro.

77

Exercise 8.6. Define a string
s='How much wood could a wood-chuck chuck if a wood-chuck could chuck wood?'.
Exercise with findstr, i.e. find all appearances of the substrings 'wood', 'o', 'uc' or 'could'.
Try to build ss by concatenation of separate words. Try to do this in a few ways, e.g. make use
of strcat, disp, sprintf or fprintf. ä

Exercise 8.7.

1. Write a script/function that converts a Roman numeral to its decimal equivalent. There
are two distinct situations. The ’old’ style where the order of the symbols does not mat-
ter. In this case, IX and XI both mean 10 + 1 or 11. You should be able to handle the
following conversion table:

Roman Decimal

I 1

V 5

X 10

L 50

C 100

D 500

M 1000

The ’new’ style where the order of the symbols does matter. For example, IX is 9 (10 -
1), XC is 90 (100 - 10). The conversion table given above still holds and you may assume
for this case that the only instances of order you will encounter are: IV (4), IX (9), XL
(40), XC (90), CD (400) and CM (900). The function input will be useful here. Hint: try
the case of the ’old’ style first.

2. Write a function that will do the inverse of the previous problem — convert a decimal
number into a Roman number.

ä

Exercise 8.8. Write a coder (and a decoder) based on a Caesar encoding scheme. This scheme
is based on a fixed shift of all letters of the alphabet to the right, e.g., say with a shift 1, ’abcde’
becomes ’bcdef’ and ’alphabet’ becomes ’bmqibcfu’. Of course, ’z’ becomes then ’a’. You
can imagine a shift with 2, 3, etc, but the shift 26 gives again the same alphabet. Write two
functions coder and decoder whose one of the input arguments is shift. The second input
argument should be a string or a text file where the message is written. In case of coding,
the string or the text file should contain the original message, and in case of decoding, you
should provide an encoded string or file. ä

78

Chapter 9

Cell arrays and structures

9.1 Cell arrays

Cell arrays are arrays whose elements are cells. Each cell can contain any type of data, includ-
ing numeric arrays, strings, cell arrays etc. For instance, one cell can contain a string, another
a numeric array etc. Below is a schematic representation of a cell array:

[3 1 -7
7 2 4
0 -1 6
7 3 7]

’this is a text’

’John Smith’

35

[590 600 610]

’Hi’ [7 7]

[-1 0
0 1]

’Bye’

This particular cell array is defined in the following code. Cell arrays can be built up by as-
signing data to each cell. Cells are defined and accessed by brackets {}. For example:

>> A{1,1} = [3 1 -7;7 2 4;0 -1 6;7 3 7];

>> A{2,1} = 'this is a text';

>> B{1,1} = 'John Smith';

>> B{2,1} = 35;

>> B{3,1} = [590 600 610];

>> A{1,2} = B; % A{1,2} is the cell B

>> C{1,1} = 'Hi';

>> C{2,1} = [-1 0;0 -1];

>> C{1,2} = [7,7];

>> C{2,2} = 'Bye';

>> A{2,2} = {C}; % A{2,2} is the CELL THAT CONTAINS cell C

>> A

79

A =

[4x3 double] {3x1 cell}

'this is a text' {1x1 cell}

>> A{2,1}

ans =

this is a text

>> A{2,1}(1:4)

ans =

this

>> A{2,2} % is itself a cell

ans =

{2x2 cell}

>> A{2,2}{1} % A{2,2}{1} is our cell C

ans =

'Hi' [1x2 double]

[2x2 double] 'Bye'

>> A{2,2}{1}{2,1} % the {2,1} element of cell A{2,2}{1}

ans =

-1 0

0 -1

>> A{2,2}{1}{2,1}(1,1)

ans =

-1

There are also two useful functions with meaningful names: celldisp and cellplot. Use
help to learn more.

The common application of cell arrays is the creation of text arrays. Consider the follow-
ing example:

>> M = {'January';'February';'March';'April';'May';'June';'July';'August';

'September';'October';'November';'December'};

>> fprintf ('It is %s.\n', M{9});

It is September.

Exercise 9.1. Exercise with the concept of a cell array, first by typing the examples presented
above. Next, create a cell array W with the names of week days, and using the command
fprintf, display on screen the current date with the day of the week. The goal of this ex-
ercise is also to use fprintf with a format for a day name and a date, in the spirit of the
above example. ä

9.2 Structures

Structures are MATLAB arrays with data objects composed of fields. Each field contains one
item of information. For example, one field might include a string representing a name, an-
other a scalar representing age or an array of the last few salaries. Structures are especially
useful for creating and handling a database. One of the possible ways to create a structure
is by assigning data to individual fields. Imagine that you want to construct a database with
some information on workers of a company:

>> worker.name = 'John Smith';

>> worker.age = 35;

>> worker.salary = [5900, 6000, 6100];

>> worker =

name: 'John Smith'

age: 35

80

salary: [5900 6000 6100]

In this way, a 1×1 structure array worker with three fields: name, age and salary is con-
structed. To expand the structure, add a subscript after the structure name:

>> worker(2).name = 'Linda Murphy'; % after this, a 2nd subarray is created

>> worker(2).age = 41;

>> worker(2).salary = [7301, 7301]; % field sizes do not need to match!

>> worker

1x2 struct array with fields:

name

age

salary

Since this structure has now the size of 1×2, MATLAB does not display the contents of all
fields. The data are now organized as follows:

worker array

worker(1)

.name John Smith

.age 35

.salary
 5900, 6000, 6100

worker(2)

.name Linda Murphy

.age 41

.salary
 7301, 7301

Structures can also be build by using the struct function. For example:

>> employee=struct('name','John Smith','age',35,'salary',[5900, 6000, 6100]);

To access an entire field, include a field name after a period. To access a subarray, follow
the standard way of using subscripts:

>> worker(1).age

35

>> worker(2).salary(2)

7301

>> worker(2)

name: 'Linda Murphy'

age: 41

salary: [7301 7301]

An alternative way is to use the getfield function:

>> getfield(worker,{2},'salary')

7301 7301

There exists also a function setfield, which assigns values to a given field. New fields
can be added or deleted from every structure. To delete a field, use the command rmfield.

81

Analyze the following example:

>> worker2 = worker;

>> worker2 = rmfield (worker, 'age');

>> worker2(2).street = 'Bakerstreet 5';

>> worker2(2)

name: 'Linda Murphy'

salary: [7301 7301]

street: 'Bakerstreet 5'

>> worker2(1)

name: 'John Smith'

salary: [5900 6000 6100] % in all other substructures address field is empty

street: [] % you should assign new values for each substructure

Operating on fields and field elements is done in the same way as on any other array.
Consider the following example, where the average salary for each worker is computed.

avr_salary(1) = mean (worker(1).salary);

avr_salary(2) = mean (worker(2).salary);

Remark: structures as a concept are common organizations of data in other programming
languages. They are created in different ways, but the intention remains the same.

Exercise 9.2. Construct a structure friend, with the fields: name, address, age, birthday.
Insert a few friends with related information. Remove e.g. the field age and add the field
phone. ä

Exercise 9.3. Suppose you saved some data x in a mat-file and your friend also saved some
data x. With structures you can load both your data and your friend’s data: try and explain
the following code:

>> x=1;

>> save mydata

>> x=10;

>> save frienddata

>> clear

>> mine = load('mydata')

>> his = load('frienddata')

ä

Concerning the use of lists and parentheses in MATLAB, see help lists and help paren.

9.3 Classes and object oriented programming

Classes and objects allow for adding new data types and new operations to MATLAB. For in-
stance, the class of a variable describes the structure of the variables and the operations per-
mitted as well as functions to be used. An object is an instance of a particular class. The use
of classes and objects is the basis of object-oriented programming, which is also possible in
MATLAB. It is outside the scope of this course.

82

Chapter 10

Symbolic computation

Even though MATLAB was created to facilitate numerical calculations, nowadays it features
some symbolic computations as well. The syntax resembles that of MAPLE. For instance it
is possible to solve the equation x2 +3x +2 = 0 exactly, and to solve the differential equation
y (2)(t)+3y (1)(t)+2y(t) = sin(t) for t ∈R analytically. In this chapter we explain the basics only.

10.1 Symbolic objects

A symbolic object can be a variable, a number or an expression made of symbolic variables
and numbers. These objects can be defined using sym or syms. A common situation is:

>> a = sym('a')

a =

a

>> syms b c % this is equivalent ...

>> b = sym('b') % .. to this and

b =

b

>> c=sym('c') % .. this: now b c are symbolic variables

c =

c

>> d = a+5

d =

a+5

>> e = a+b+5;

As usual MATLAB displays the result of the expressions if not suppressed by ;. A difference
is that displayed symbolic objects are not indented. As we shall see the syntax and command
of the symbolic toolbox is similar to that of MAPLE, but some MATLAB conventions are main-
tained like the ;.

Exercise 10.1. Clear your workspace, and define the symbolic variables x, y , and z, where z is
x + y +

p
5. Furthermore, define the (normal) variable a as

p
5. Finally, type who and whos and

note how the symbolic variables are displayed differently from the non-symbolic ones. ä

Creating a symbolic expression is also easy.

>> syms x y

>> f = x^2 + y^2 + 3/2 % A symbolic expression

f =

x^2 + y^2 + 3/2

>> g = (1/3)*x^2 - 5/4; % Another symbolic expression (not displayed)

83

>> F = f+g

F =

4/3*x^2+y^2+1/4

>> G=subs(F,1) % substitute x=1

G =

19/12+y^2

So we see that it does the calculations exact and directly.

Exercise 10.2. Define the symbolic expressions f = x3 + 3x2 + 3x + 1 and g = (x + 1)2. Next
calculate f + g , f − g , f ∗ g , and f /g . ä

As you might have noticed in the last exercise, the symbolic expression are not simplified,
only simple calculations are done.

Exercise 10.3. Use simplify to simplify the answers of the previous exercise. ä

Exercise 10.4. Define the symbolic expression f = sin(x)+ x2. Next perform the commands
int and diff on this expression and guess what these commands do. You can use help to
find more about it. ä

10.2 Solving symbolic expressions

Many times symbolic expression have to be solved. With the solve command this is easy.
Standard the command solve('eq'), solves the equation eq=0.

>> syms x y

>> solve(exp(x)-5) % This solves exp(x)=5

ans =

log(5)

>> solve(x-5+y,x) % This solves in x+y=5 for x

ans =

5-y

>> f = x^2 + 3*x + 2;

>> xzero= solve(f)

xzero =

-1

-2

>> xzero = solve('x^2+3*x+2=0'); % Same as above

>> yzero = solve('y^2+3*y+3-9')

yzero =

-3/2+1/2*i*3^(1/2)

-3/2-1/2*i*3^(1/2)

>>whos

Name Size Bytes Class

ans 1x1 136 sym object

f 1x1 142 sym object

x 1x1 126 sym object

xzero 2x1 192 sym object

y 1x1 126 sym object

yzero 2x1 256 sym object

Grand total is 65 elements using 978 bytes

We see that the zeros of the expression are treated as symbolic objects. It is easy to see
which numerical value xzero have, but of yzero this is not immediately clear. With the com-
mand double one can convert a symbolic number to a MATLAB number.

84

Exercise 10.5. Find the zeros of x2+4x+2 and that of x2+2x+4. Calculate the absolute value
of all the zeros. Which of the (four) zeros has the largest absolute value? ä

One can also solve a system of equations.

>> syms x y

>> [x1,y1]=solve('y+x=5','x-y=3',x,y)

x1 =

4

y1 =

1

Exercise 10.6. Determine the intersection points of the line x+3y = 1 with the circle x2+y2 =
2. ä

10.3 Solving ordinary differential equations

An ordinary differential equation can be solved symbolically with the command dsolve. An
ordinary differential equation can also be solved numerically using the command quad. How-
ever, in this section we only show how it can be done symbolically. The derivative of the
function f is denote Df, and the second derivative by D2f.

>> syms f g t

>> dsolve('Df+f=5')

ans =

5 + exp(-t)*C1

>> dsolve('Df+f=5,'f(0)=4')

ans =

5 - exp(-t)

>> dsolve('D2g+3*Dg+2*g=0')

ans =

C1*exp(-t)+C2*exp(-2*t)

>> pretty(ans)

C1 exp(-2 t) + C2 exp(-t)

Exercise 10.7. Solve the differential y (2)(t)+ 3y (1)(t)+ 2y(t) = t with y(0) = 0, and y (1)(0) =
3. ä

Exercise 10.8. Solve the differential equation y (2)(t)+3y (1)(t)+3y(t) = e−t with y(0) = y(1) =
0. ä

The answer to differential equation can be quite long and complicated. Thus it would be
nice if one can plot the answer. Since the answer is symbolic expression, one cannot use the
plot-command. The ezplot-command plots symbolic expressions.

>> syms f t

>> f1=dsolve('Df+f=5','f(0)=4')

f1 =

5 - exp(-t)

>> ezplot(f1)

>> ezplot(f1,[0,6]) % Plots the function on the range 0 < t < 6

Exercise 10.9. Plot the solution of the differential equation of the previous exercise. ä

85

Exercise 10.10. Type the following commands and see what happens.

>> syms x y t

>> S=x^2 + 3*x*y + y^2 - 10

>> ezplot(S)

>> f=cos(2*t)

>> g=sin(4*t)

>> ezplot(f,g)

ä

10.4 From symbolic function to function handle

>> syms f,t;

>> f=sin(t)/t; % symbolic function

>> fh=matlabFunction(f) % function handle

fh =

@(t) sin(t)./t

86

Chapter 11

Optimizing the performance of MATLAB

code

MATLAB means “Matrix Laboratory”. It is optimized for matrix operations. For best perfor-
mance of your code, you should always try to take advantage of this fact.

11.1 Vectorization — speed-up of computations

Vectorization is simply the use of compact expressions that operate on all elements of a vec-
tor without explicitly executing a loop. MATLAB is optimized such that vector or matrix oper-
ations are much more efficient than loops. Most built-in functions support vectorized opera-
tions. So, when possible, try to replace loops with vector operations. For instance, instead of
using:

for i = 1:10

t(i) = 2*i;

y(i) = sin(t(i));

end

try this:

t = 2:2:20;

y = sin(t);

Copying or other operations on matrices can be vectorized, as well. Check the equivalence
between the scalar version:

n = 10;

A = rand(n,n);

B = ones(n,n);

for k=1:n

B(2,k) = A(2,k); % A and B have the same size

end

and the vectorized code of the last loop:

B(2,:) = A(2,:);

or between the following loop:

for k=1:n

B(k,1) = A(k,k);

87

end

and the vectorized expression:

B(1:n,1) = diag(A(1:n,1:n));

Logical operations and a proper use of the colon notation make the programs work faster.
However, some experience is needed to do this correctly. Therefore, the advice is: start first
with the scalar code and then vectorize it if possible, by removing loops.

Exercise 11.1. Look at your script or function m-files already written, especially your loop
exercises. Try to vectorize their codes. ä

Exercise 11.2. Try to vectorize the following codes:

% code 1

n = 20;

m = 10;

A = rand(n,m);

for i=1:n

for j=1:m

if (A(i,j) > 0.5)

A(i,j) = 1;

else

A(i,j) = 0;

end

end

end

% code 2

n = 20;

m = 10;

A = randn(n,m);

x = randn(n,1);

p = zeros(1,m);

for i=1:m

p(i) = sum (x .* A(:,i)); % what is p?

end

%

%

ä

11.2 Array preallocation

In ’real’ programming languages the allocation of memory is necessary. It is not needed in
MATLAB, but it might improve execution speed. Moreover, practicing it, is a good habit. Pre-
allocate the arrays, which store your output results. This prevents MATLAB from resizing an
array each time you enlarge it. Preallocation also helps to reduce memory fragmentation if
you work with large matrices. During a MATLAB session, memory can be fragmented. As a
result, there may be plenty of free memory, but insufficient in continuous blocks to store a
large variable.

Exercise 11.3. Create two scripts with the listings given below. Run them and compare the
results, i.e. the measured times of their performances. The pair of commands tic and toc is
used to measure the execution time of the operations:

% script 1

clear s x;

tic;

x = -250:0.1:250;

for i=1:length(x)

if (x(i) > 0)

s(i) = sqrt(x(i));

else

s(i) = 0;

88

end

end

toc;

% script 2

clear s x;

tic;

x = -250:0.1:250;

s = zeros (size(x)); % preallocate memory

for i=1:length(x)

if (x(i) > 0)

s(i) = sqrt(x(i));

end

end

toc;

Remember that scripts work in the workspace, interfering with the existing variables. There-
fore, for a fair comparison, the variables s and x should be removed before running each
script. Having done this, try to vectorize the code. ä

Exercise 11.4. Consider the following sequence of commands:

d = pi/50;

n = round(2 + pi/d);

m = round(n/2);

for j = 1:m

x(j) = (j+3)*d;

y(j) = cos(2*x(j));

end

for j = m+1:n

x(j) = (j-1)*d;

y(j) = cos(4*x(j));

end

Improve the performance of the code above. Pre-allocate memory for the vectors x and y.
Vectorize the calculation of these vectors. ä

11.3 MATLAB tricks and tips

Many of the MATLAB’s tricks use the fact that there are two ways of addressing matrix ele-
ments using a vector as an index:

1. If x and y are vectors, then x(y) is the vector [x(y(1)), x(y(2)), ..., x(y(n))],
where n=length(y). For instance:

>> x = [3 -1 4 2 7 2 3 5 4];

>> y = 1:2:9; x(y)

ans =

3 4 7 3 4

>> y = [5 5 5]; x(y)

ans =

7 7 7

>> y = [1 5 1 1 7]; x(y)

ans =

3 7 3 3 3

89

2. If x and y are vectors of the same size and y only consists of 0s and 1s then MATLAB

interprets y via logical-indexing. As a result, the elements of x are returned whose posi-
tion corresponds to the location of a 1 in x. For instance:

>> x = [3 -1 4 2 7 2 3 5 4];

>> y = x < 4, x(y)

y =

1 1 0 1 0 1 1 0 0

ans =

3 -1 2 2 3

>> y = (x == 2) | (x > 6), x(y)

y =

0 0 0 1 1 1 0 0 0

ans =

2 7 2

The examples before should serve you to optimize your MATLAB routines. Use help when
necessary to learn more about commands used and test them with small matrices. When
more solutions are given, try to use tic and toc to measure the performance for large matri-
ces to decide which solution is faster.

• Create a row (column) vector of n uniformly spaced elements:

>> a = -1; b = 1; n = 50;

>> x1 = a:2/(n-1):b; % a row vector

>> y1 = (a:2/(n-1):b)'; % a column vector

>> x2 = linspace(a,b,n); % a row vector

>> y2 = linspace(a,b,n)'; % a column vector

• Shift k (k should be positive) elements of a vector:

>> x = [3 -1 4 2 7 2 3 5 4];

>> x([end 1:end-1]); % shift right (or down for columns) 1 element

>> k = 5;

>> x([end-k+1:end 1:end-k]);% shift right (or down for columns) k elements

>> x([2: end 1]); % shift left (or up for columns) 1 element

>> x([k+1:end 1:k]); % shift left (or up for columns) k elements

• Initialize a vector with a constant.

>> n = 10000;

>> x = 5 * ones(n,1); % 1st solution

>> y = repmat(5,n,1); % 2nd solution - should be fast

>> z = zeros(n,1); z(:)=5; % 3rd solution - should be fast

• Create an n ×n matrix of

>> n = 1000;

>> A = 3 * ones(n,n); % 1st solution

>> B = repmat(3,n,n); % 2nd solution - should be much faster!

• Create a matrix consisting of a row vector duplicated m times:

90

>> m = 10;

>> x = 1:5;

>> A = ones(m,1) * x; % 1st solution

>> B = x(ones(m,1),:); % 2nd solution - should be fast

• Create a matrix consisting of a column vector duplicated n times:

>> n = 5;

>> x = (1:5)';

>> A = x * ones(1,n); % 1st solution

>> B = x(:,ones(n,1)); % 2nd solution - should be faster

• Given a vector x, create a vector y in which each element is replicated n times:

>> n = 5;

>> x = [2 1 4];

>> y = x(ones(1,n),:); y = y(:)';

>> x = [2 1 4]';

>> y = x(:,ones(1,n))'; y = y(:);

• Reverse a vector:

>> x = [3 -1 4 2 7 2 3 5 4];

>> n =length(x);

>> x(n:-1:1) % 1st solution

>> fliplr(x) % 2nd solution - should be faster

Reverse one column of a matrix:

>> A = round (5*rand(4,5));

>> c = 2;

>> A(:,c) = flipud (A(:,c));

• Interchange rows or columns of a matrix:

>> A = round (5*rand(4,5));

>> i1 = 1; i2 = 4;

>> A([i1,i2],:) = A([i2,i1],:); % swap rows

>> A(:,[i1,i2]) = A(:,[i2,i1]); % swap columns

• Make a column vector from a matrix A by concatenating its columns, A(:).

• Reshape an (m*n)-by-1 vector x into an m-by-n matrix whose elements are taken column-
wise from x.

>> A = round (5*rand(4,5))

>> x = A(:); % x is now a 20-by-1 vector

>> B = reshape(x,4,5); % B is now a 4-by-5 matrix; B = A;

>> C = reshape(x,5,4); % B is now a 5-by-4 matrix; B is NOT A'!

• Find out those elements which are shared by two matrices (or vectors):

91

>> A = round (5*rand(4,5));

>> B = round (6*rand(3,6));

>> intersect (A(:),B(:)) % different sizes of A and B are permitted

• Combine two vectors into one, removing repetitive elements:

>> x = 1:10;

>> y = [1 5 4 1 7 -1 2 2 6];

>> union (x,y)

• Find unique elements in a vector:

>> x = [1 5 4 1 7 -1 2 2 6 1 1];

>> unique (x)

• Find the elements in a vector x which are different from a vector y:

>> x = [1 5 4 1 7 -1 2 2 6 1 1];

>> x = [5 2 2 7 8 4 4];

>> setdiff(x,y)

• Derive cumulative sums of a vector x:

>> x = [1 5 4 1 7 1 2 2 6 1 1];

>> z = cumsum(x); % z is a vector of cumulative sums

• Given x, determine a vector of differences
[
x(2)−x(1) x(3)−x(2) · · · x(n)−x(n −1)

]
:

>> x = [1 5 4 1 7 1 2 2 6 1 1];

>> z = diff(x);

• Keep only the diagonal elements of the matrix multiplication, i.e. vectorize the loop
(both A and B are of n-by-m matrices):

z = zeros(n,1);

for i=1:n

z(i) = A(i,:) * B(i,:)';

end

The solutions:

>> z = diag(A * B'); % 1st solution

>> z = sum (A .* B, 2); % 2nd solution solution - should be faster

• Scale all columns of the matrix A by a column vector x:

>> A = round (7*rand(4,5));

>> [n,m] = size(A);

>> x = (1:n)'; % x is an n-by-1 vector

>> B = A ./ x(:,ones(m,1));

Scale all rows of the matrix A by a row vector x:

92

>> A = round (7*rand(4,5));

>> [n,m] = size(A);

>> x = 1:m; % x is 1-by-m

>> B = A ./ x(ones(n,1),:);

Actually, since 2017 MATLAB does this very efficiently with B=A./x which works for both
of the above to cases!

Other useful tips are:

• Use the ginput command to input data with a mouse. Try, for instance:

>> x = 0; y = 0;

>> while ~isempty(x)

[x1,y1] = ginput(1);

plot([x x1],[y y1],'b.-');

hold on

x = x1; y = y1;

end

• If you want to find out what takes so long in you MATLAB code, use the command
profile, which ’helps you debug and optimize M-files by tracking their execution time.
For each function, the profiler records information about execution time, number of
calls, parent functions, child functions, code line hit count, and code line execution
time.’ Try, e.g.:

>> profile on -detail builtin

>> rgb = imread('ngc6543a.jpg');

>> profile report

93

94

Chapter 12

File input/output operations

File input and output (I/O) functions read and write arbitrary binary and formatted text files.
This enables you to read data collected in other formats and to save data for other programs,
as well. Before reading or writing a file you must open it with the fopen command:

>> fid = fopen (file_name, permission);

The permission string specifies the type of access you want to have:

• 'r' - for reading only

• 'w' - for writing only

• 'wt' - for writing only, in text mode

• 'a' - for appending only

• 'r+' - both for reading and writing

Here is an example:

>> fid = fopen ('results.txt','w') % tries to open file results.txt for writing

The fopen statement returns an integer file identifier, which is a handle to the file (used
later for addressing and accessing your file). When fopen fails (e.g. by trying to open a non-
existing file), the file identifier becomes −1. It is also possible to get an error message, which
is returned as the second optional output argument.

It is a good habit to test the file identifier when you open a file, especially for reading
because perhaps the file does not exist.

Exercise 12.1. Create a script with the code given below and check its behavior when you
give a name of a non-existing file (e.g. noname.txt) and a readable file (e.g. one of your func-
tions). ä

fid = 0;

while fid < 1

fname = input ('Open file: ', 's');

[fid, message] = fopen (fname, 'r');

if (fid == -1)

disp('couldn''t find the file');

else

disp('yes, I found the file and opened it');

fclose(fid)

95

end

end

When you finish working on a file, use fclose to close it up. MATLAB automatically closes
all open files when you exit it. However, you should close your file when you finished using it:

fid = fopen ('results.txt', 'w');

...

fclose(fid);

Type also help fileformats to find out which are readable file formats in MATLAB.

12.1 Text files

The fprintf command converts data to character strings and displays it on screen or writes
it to a file. The general syntax is:

fprintf (fid,format,a,...)

For more detailed description, see Section 8.2. Consider the following example:

>> x = 0:0.1:1;

>> y = [x; exp(x)];

>> fid = fopen ('exptab.txt','wt');

>> fprintf(fid, 'Exponential function\n');

>> fprintf(fid, '%6.2f %12.8f\n',y);

>> fclose(fid);

Exercise 12.2. Prepare a script that creates the sintab.txt file, containing a short table of
the sine function. ä

The fscanf command is used to read a formatted text file. The general function definition
is:

[A,count] = fscanf (fid, format, size)

This function reads text from a file specified by file identifier fid, converts it according
to the given format (the same rules apply as in case of the fprintf command) and returns
it in a matrix A. count is an optional output argument standing for the number of elements
successfully read. The optional argument size says how many elements should be read from
the file. If it is not given, then the entire file is considered. The following specifications can
be used:

• n - read at most n elements into a column vector;

• inf – read at most to the end of the file;

• [m,n] – read at most m,n elements filling at least an m-by-n matrix, in column order; n
can be inf.

Here is an example:

>> a = fscanf (fid, '%5d', 25); % read 25 integers into a vector a

>> A = fscanf (fid, '%5d', [5 5]); % read 25 integers into a 5 x 5 matrix A

96

MATLAB can also read lines from a formatted text and store it in a string. Two functions
can be used for this purpose, fgets and fgetl. The only difference is that fgetl copies the
newline character while fgets does not.

Exercise 12.3. Create the following script and try to understand how it works (use the help

command to learn more on the feof function):

fid = fopen ('sintab.txt','r');

mytitle = fgetl (fid);

k = 0;

while ~feof(fid)

k = k+1;

line = fgetl (fid);

tab(k,:) = str2num (line);

end

fclose(fid);

Look at the matrix tab. How does it differ from the originally created matrix? ä

Reading lines from a formatted text file may especially be useful when you want to modify
an existing file. Then, you may read a specified number of lines of a file and add something
at the found spot.

Exercise 12.4. Create a script that reads the exptab.txt file and at the end of the file adds
new exponential values, say, for x = 1.1 : 0.1 : 3. Note that you should open the exptab.txt file
both for reading and writing. ä

A pair of useful commands to read and write ASCII delimited file (i.e. columns are sep-
arated by a specified delimiter such as space ' ' or tab, 't') is dlmread and dlmwrite. A
more general command is textread, which reads formatted data from a text file into a set of
variables. Not only numeric data are read, but also characters and strings.

Exercise 12.5. Write the function countlet that: opens a file specified by a name, reads this
file line by line and counts the number of appearance of the specified letter (so, there are two
input arguments: the name and the letter). Remember to return an error message when there
is a problem with opening the file. Create a text file test.txt with some text, e.g. by writing
random words or retyping a few sentences of a book. Test your function by calling:

>> c = countlet ('test.txt', 'd');

>> c = countlet ('countlet.m', 'a'); % YES, you can do this!

ä

12.2 Binary files

There are two important variables to write and read from a binary file: fread and fwrite. The
definition of the function fwrite is given below:

count = fwrite (fid, A, precision)

This command writes the elements of matrix A to the provided file, while converting val-
ues to the specified precision. The data is written in column order. count is the number of
successfully written elements.

The definition of the function fread is given below:

[A, count] = fread (fid, size, precision)

97

This reads binary data from the specified file and writes it into matrix A. count is an op-
tional parameter, which returns the number of elements successfully read. The size argu-
ment is optional and its specification is the same as in case of the fscanf function (see Sec-
tion 12.1). The precision argument controls the number of bits read for each value and their
interpretation as character, integer or floating-point values, e.g. 'uchar', 'int16' or 'single'
(learn more from help). By default, numeric values are returned in double precision.

Exercise 12.6. Exercise with the following scripts:

% Write the 5-by-5 magic square into binary file

M = magic(5); % creates a magic square

fid1 = fopen ('magic5.bin','w');

count = fwrite (fid1, M, 'int16'); % count should be 25

% fwrite reads M columnwise!

fclose(fid1);

Note that a 50-byte binary file should appear (25 integer numbers, each stored in 2 bytes).

% Read the 5-by-5 magic square into binary file

fid2 = fopen ('magic5.bin','rb');

[A, count] = fread (fid2, [5,5], 'int16'); % count should be 25

fclose(fid2);

Check what will happen if you skip the specification of either size or type, e.g.

[B, count] = fread (fid2);

or

[B, count] = fread (fid2, [5,5]);

Note that each time you should open and close the magic5.bin file. ä

A particular location within a file is specified by a file position indicator. This indicator is
used to determine where in the file the next read or write operation will begin. The MATLAB

functions operating on the file position indicator are summarized below:

Function Purpose
feof determines if file position indicator reached the end-of-file
fseek sets file position indicator to the specified byte with respect to the given origin
ftell returns the location of file position indicator
frewind resets file position indicator to beginning of file

To understand how fseek and ftell work, consider this script (you can use on-line help
to learn more about these function’s specifications):

a = 1:5;

fid = fopen ('five.bin','w');

count = fwrite (fid, a, 'single');

fclose(fid);

Five integers are written to the file five.bin with a single precision, so each number uses
4 bytes. Try to understand what is happening here:

>> fid = fopen ('five.bin','r'); % open for reading

>> status = fseek (fid, 12, 'bof'); % move the file position indicator forward

98

>> % 12 bytes from the beginning of file 'bof'

>> % status is 0 if operation was successful

>> four = fread (fid, 1, 'single'); % read one element at the current position,

>> % starting from byte 13 (the fourth number)

>> pos = ftell (fid); % check the position; the number 4 is read,

>> % so it should be 16 now

>> status = fseek (fid, -8, 'cof'); % move the file position indicator backward

>> % 8 bytes from the current position 'cof'

>> pos = ftell (fid); % check the position; it should be 8

>> three = fread (fid, 1, 'single'); % read one element, so it should be 3

>> fclose(fid);

99

100

Chapter 13

Writing and debugging MATLAB

programs

The recommendations in this section are general for programming in any language. Learn-
ing them now will turn out to be beneficial in the future or while learning real programming
languages like C, where structured programming is indispensable.

13.1 Structural programming

Never write all code at once; program in small steps and make sure that each of these small
steps work as expected, before proceeding to the next one. Each step should be devoted
to only one task. Do not solve too many tasks in one module. This is called structured or
modular programming. Formally, modularity is the hierarchical organization of a system or
a task into self-contained subtasks and subsystems, each having a prescribed input-output
communication. It is an essential feature of a well designed program. The benefit of struc-
tural programming are: easier error detection and correction, modifiability, extensibility and
portability. A general approach to a program development is presented below:

1. Specification. Read and understand the problem. The computer cannot do anything it-
self: you have to tell it how to operate. Before using the computer, some level of prepa-
ration and thought is required. Some basic questions to be asked are:

• What are the parameters/inputs for this problem?

• What are the results/outputs for this problem?

• What form should the inputs/outputs be provided in?

• What sort of algorithms is needed to find the outputs from the inputs?

2. Design. Split your problem into a number of smaller and easier tasks. Decide how to
implement them. Start with a schematic implementation to solve your problem, e.g.
create function headers or script descriptions (decide about the input and output argu-
ments). To do this, you may use, for example, a top-down approach. You start at the
most general level, where your first functions are defined. Each function may be again
composed of a number of functions (subfunctions). While ’going down’ your functions
become more precise and more detailed.

As an example, imagine that you have to compare the results of the given problem for
two different datasets, stored in the files data1.dat and data2.dat. Schematically, such
a top-down approach could be designed as:

• This is the top (the most general) level. A script solve_it is created:

101

[d1, d2] = read_data ('data1.dat', 'data2.dat');

[res1, err1] = solve_problem (d1);

[res2, err2] = solve_problem (d2);

compare_results (res1, res2, err1, err2);

• This is the second level. The following functions read_data, solve_problem and
compare_results belong here. Each of them has to be defined in a separate file:

function [d1, d2] = read_data (fname1, fname2)

% Here should be some description.

%

fid1 = fopen (fname1,'r');

.... % check whether the file fname1 exists

fclose(fid1);

fid2 = fopen (fname2,'r');

.... % check whether the file fname2 exists

fclose(fid2);

....

d1 = ...

d2 = ...

return;

function [res, err] = solve_problem (d)

% Here should be some (possibly detailed) description.

%

....

res = ... % the data d is used to compute res

err = compute_error (res);

return;

function compare_results (res1, res2, err1, err2)

% Some description.

tol = 1e-6;

....

if abs (err1 - err2) > tol

fprintf ('The difference is significant.')

else

fprintf ('The difference is NOT significant.')

end;

return;

• In this example, this is the last level. The function solve_problem uses the func-
tion: compute_error, which has to be defined:

function err = compute_error (res)

% Here should be some (possibly detailed) description.

%

....

err = % the variable res is used to compute err

return;

3. Coding. Implement the algorithms sequentially (one by one). Turning your algorithm
into an efficient code is not a one-shot process. You will have to try, make errors, correct

102

them and even modify the algorithm. So, be patient. While implementing, make sure
that all your outputs are computed at some point. Remember about the comments and
the style requirements (see Section 13.3).

4. Running and debugging (see also Section 13.2). Bugs will often exist in a newly writ-
ten program. Never, ever, believe or assume that the code you just created, works as
intended. Always check the correctness of each function or script: Twice. You may add
some extra lines to your code which will present the intermediate results (screen dis-
plays, plots, writes to files) to help you controlling what is going on. Those lines can be
removed later.

5. Testing and Verification. After the debugging process, the testing stage starts. Prepare a
number of tests to verify whether your program does what it is expected to do. Remem-
ber that good tests are those for which the answers are known. Your program should
produce correct results for normal test conditions as well as boundary conditions.

6. Maintenance. In solving your task, new ideas or problems may appear. Some can be
interesting and creative and some can help you to understand the original problem bet-
ter; you may see an extent to your problem or a way to incorporate new things. If you
have a well-designed problem, you will be able to easily modify it after some time. Take
a responsibility to improve your solutions or correct your errors when found later.

13.2 Debugging

Debugging is the process by which you isolate and fix any problem with your code. Two kinds
of errors may occur: syntax error and runtime error. Syntax errors can usually be easily cor-
rected by MATLAB error messages. Runtime errors are algorithmic in nature and they occur
when e.g. you perform a calculation incorrectly. They are usually difficult to track down, but
they are apparent when you notice unexpected results.

Debugging is an inevitable process. The best way to reduce the possibility of making a
runtime error is defensive programming:

• Do not assume that input is correct, simply check.

• Where reasonable and possible, provide a default option or value.

• Provide diagnostic error messages.

• Optionally print intermediate results to check the correctness of your code.

Defensive programming is a part of the early debugging process. Another important part is
modularity, breaking large task into small subtasks, which allows for developing tests for each
of them more easily. You should always remember to run the tests again after the changes
have been made. To make this easy, provide extra print statements that can be turned on or
off.

MATLAB provides an interactive debugger. It allows you to set and clear breakpoints, spe-
cific lines in an m-file at which the execution halts. It also allows you to change the workspace
and execute the lines in an m-file one by one. The MATLAB m-file editor also has a debug-
ger. The debugging process can be also done from the command line. To use the debugging
facility to find out what is happening, you start with the dbstop command. This command
provides a number of options for stopping execution of a function. A particularly useful op-
tion is:

dbstop if error

103

This stops any function causing an error. Then just run the MATLAB function. Execution
will stop at the point where the error occurs, and you will get the MATLAB prompt back so that
you can examine variables or step through execution from that point. The command dbstep

allows you to step through execution one line at a time. You can continue execution with the
dbcont. To exit debug mode, type dbquit. For more information, use help for the following
topics: dbstop, dbclear, dbcont, dbstep, dbtype, dbup and dbquit.

13.3 Recommended programming style

Programming style is a set of conventions that programmers follow to standardize their code
to some degree and to make the overall program easier to read and to debug. This will also
allow you to quickly understand what you did in your program when you look at it weeks or
months from now. The style conventions are for the reader only, but you will become that
reader one day.

Some style requirements and style guidelines are presented below. These are recommen-
dations, and some personal variations in style are acceptable, but you should not ignore them.
It is important to organize your programs properly since it will improve the readability, make
the debugging task easier and save time of the potential readers.

1. You should always comment difficult parts of the program! But do not explain the ob-
vious.

2. Comments describing tricky parts of the code, assumptions, or design decisions are
suggested to be placed above the part of the code you are attempting to document. Try
to avoid big blocks of comments except for the description of the m-file header.

3. Indent a few spaces (preferably 2 or 3) before lines of the code and comments inside
the control flow structures. The layout should reflect the program ’flow’. Here is an
example:

x = 0:0.1:500;

for i=1:length(x)

if x(i) > 0

s(i) = sqrt(x(i));

else

s(i) = 0;

end

end

4. Avoid the use of magic numbers; use a constant variable instead. When you need to
change the number, you will have to do it only once, rather than searching all over your
code. An example:

% A BAD code that uses % This is the way it SHOULD be

% magic numbers

r = rand(1,50); n = 50; % number of points

for i = 1:50 r = rand(1,n);

data(i) = i * r(i); data = (1:n) .* r;

end

y = sum(data)/50; avr = sum(data)/n;

disp(['Number of points is 50.']); disp(['Number of points is ',int2str(n)]);

5. Avoid the use of more than one code statement per line in your script or function m-
files.

104

6. No line of code should exceed 80 characters.

7. Avoid declaring global variables. You will hardly ever encounter a circumstance under
which you will really need them. Global variables can get you into trouble without you
noticing it!

8. Variables should have meaningful names. You may also use the standard notation, e.g.
x, y are real-valued, i, j, k are indices and n is an integer. This will reduce the number
of comments and makes your code easier to read. However, here are some pitfalls when
choosing variable names:

• A meaningful variable name is good, but when it gets longer than 15 characters, it
tends to obscure rather than improve the code readability.

• Be careful with names since there might be a conflict with MATLAB’S built-in func-
tions, or reserved names like mean, end, sum etc (check in index or ask which <name>

in MATLAB – if you get the response <name> not found it means that you can
safely use it).

• Avoid names that look similar or differ only slightly from each other.

9. Use white spaces; both horizontally and vertically, since it will greatly improve the read-
ability of your program. Blank lines should separate larger blocks of the code.

105

106

References

• MATLAB. http://www.mathworks.com/.

• All sorts of tips and tricks in MATLAB:
http://www.ee.columbia.edu/~marios/matlab/matlab_tricks.html

• D.C. Lay, Linear algebra and its applications, Addison-Wesley, 1994.

• A. Gilat, Matlab An introduction with Applications, second edition, John Wiley & Sons,
2005.

107

Index

*, 9, 20
+, 9, 20
<=, logical, 43
<, logical, 43
==, logical, 43
>=, logical, 43
>, logical, 43
\, 9
^, 9
-, 9, 20
.*, 20
>>, 1
./, 20
./, 17, 18
.\, 20
.^, 20
.^, 17
.dat, 6
.m, 5
.mat, ix, 6
.txt, 6
/, 9
|, logical, 43
,̃ logical, 43

˜=, logical, 43
&, logical, 43
[], 22
%, 3
^, 20

@, 55
algorithm, ix
anonymous function, 55
ans, 2
array, 15
ASCII, ix
axis, 35, 36
axis equal, 35, 36
axis image, 35, 36
axis normal, 36
axis off, 36
axis on, 36
axis square, 35

axis tight, 36

binary file, ix
binary system, viii
bit, viii
box off, 35
box on, 35
bug, ix
byte, viii

character, ix
clear, 5
clear all, 5
clf, 35
colon notation, 16
command, ix
complex conjugate transpose, 17
complex numbers, 11
constant, ix
cos, 3

D2f, 85
data, ix
data type, ix
debugging, ix
Df, 85
diag, 20
diff, 84
directory, ix
disp, 47
double, 84
dsolve, 85

eig, 21
element-wise

division, 17
product, 17

empty matrix, 22
end, 18
enter, 2
eps, 13
exit, 1
eye, 20, 22
ezplot, 85

108

figure, 34
figure(n), 34
file, ix

ASCII, ix
binary, ix
dat-, 6
function, 57
m-, 5, 7
mat-, ix, 6
txt-, 6

find, 46
floating point, ix
fminbnd, 56
for, 50
format compact, 3
format long, 3
format loose, 3
format short, 3
fplot, 69
fsolve, 56
function

anonymous, 55
handle, 55

function, 57
function m-file, 57

grid, 36
grid off, 35
grid on, 35
gtext, 35

help, 4
hold off, 35
hold on, 35

i, 13
if, 47
Inf, 9, 13
input, 53
int, 84
integer, ix
integral, 56, 70
inv, 20
isempty, 53

j, 13

legend, 35
legend off, 35
linewidth, 35
linspace, 21
load, 6
logical operation, 43

|, 43
,̃ 43

˜=, 43
<=, 43
<, 43
==, 43
>=, 43
>, 43
&, 43

loglog, 33
logspace, 21
lookfor, 4
loops, 50

m-files, 5, 7
matrix, 21

transpose, 20
matrix manipulation, 19
matrix operation, 20, 21
max, 20
mesh, 39
meshgrid, 39
min, 20

NaN, 9, 13
nargin, 13
nargout, 13
null, 21

ones, 20

path, 5
pi, 13
plot

color, 33
complex, 37
function plot, 69
styles, 33
surfaces, 39
symbolic expression, 85
three dimensional, 38

plot, 33
plot3, 38
pointer

to function, 55
print, 38
program, ix
prompt >>, 1

quad, 85
quit, 1

rand, 20

109

randn, 20
realmax, 13
realmin, 13

save, 6
semilogx, 33
semilogy, 33
simplify, 84
sin, 3
size, 22
solve, 84
subplot, 35, 36
sum, 20
surf, 39
svd, 21
switch, 49
sym, 83
syms, 83

text, 35
title, 35, 36
transpose, 17, 21

matrix, 20
tril, 20
triu, 20

variable, ix
global, 61
local, 61

vector
colon notation, 16
column, 16
row, 15

while, 51
who, 5
whos, 5
window

command, 1

xlabel, 35

ylabel, 35

zeros, 20
zlabel, 35

110

