

1 INTRODUCTION 2

1 Introduction

Welcome to the Matlab course manual. In this manual you will �nd a compact reference piece that will

hopefully help you through your journey of getting to know Matlab. Any missing content or mistakes/-

suggestions can be emailed to cursus@scintilla.utwente.nl. Any help will be greatly appreciated.

Contents

1 Introduction 2

2 Analytical vs. Numerical 3

3 The Matlab interface 6

3.1 Accessing matrix elements . 9

4 E�cient scripting 13

5 If and for 16

5.1 The for-loop, when to use . 16

6 Plots and subplots 18

6.1 Plot properties . 19

7 Cells, Structs and Arrays 20

7.1 Structs . 21

8 Arrayfun (more useful than fun) 24

8.1 Anonymous functions . 25

9 Debugging 26

10 Exercises 27

10.1 Basic . 27

10.2 Moderate . 27

10.3 Advanced . 28

2 ANALYTICAL VS. NUMERICAL 3

2 Analytical vs. Numerical

An important nuance to understand in order to develop a proper intuition in the usage of Matlab is the

di�erence between analytical an numerical computations.

Consider a function f(x) that maps a value f onto the argument x. The function f(x) in principle is

a purely analytical description. Take for example the following function f(x):

f(x) =
1

2
x2 − 3x

For every rational or even complex value of x there exists some answer that is precisely de�ned by this

function. Now lets imagine we want to ’plot’ this function. How would we go about doing this? Don’t try

to answer this question in the context of Matlab just yet, consider a generic situation. Most of the times,

one takes a �nite set of x-values and calculates the corresponding f value mathematically. The precision

of this is not relevant yet. Please notice how, in practice, plotting is never done with an in�nite precision

meaning, an in�nite amount of x values inside a bounded interval. This is simply because we have limited

time and at a certain point, adding more points doesn’t make a di�erence.

The result of such a process could give you something like this: This, on its own, could be considered

Figure 1: Connected lines left and the individual points right

as a nice example of a situation where an analytical expression is transferred into a numerical domain.

In principle, an analytical expression gives information in the mathematical language. Numerical in-

formation however is always related to actual values instead of expressions. One could consider this to

be the di�erence between the mathematics we did in lower school (3 + 5 = 8) and algebra (a+ b = c).

The di�erence between Matlab and other software such as maple is not yet what we have been talk-

ing about. The nature pops up more prominently when we consider, for example, transformations. Take

the following transformation T which results in the following description:

f(x)→ f(x) · T → g(x)

In this case, g(x) follows from its input f(x) and the transformation T which could be anything. Its

important to notice here that transformation T could be applied both analytically and numerically. A

simple example would be the di�erential operator: T = d/dx which gives you the following expression:

1

2
x2 − 3x→ d

dx

[
1

2
x2 − 3x

]
→ g(x)

2 ANALYTICAL VS. NUMERICAL 4

The question is how we go about evaluating g(x). One method could be the ’analytical’ implementation

of transformation T which is described by calculus as invented by Isaac Newton. This results into the

following expression:

g(x) = x− 3

This function is fully analytical and gives us the most precise expression for g(x) possible. This is also

because the d/dx became a continuous operation with the introduction of limits:

df(x)

dx
= lim

µ→0

f(x+ µ)− f(x)
µ

A numerical evaluation of this exact transformation however is completely di�erent and would be per-

formed something like this:

g[n] =
f [n+ 1]− f [n]
x[n+ 1]− x[n]

where,

n ∈ N

In this situation, the values of g(x) are numerically evaluated by performing a di�erentiation-like opera-

tion on the set of numbers we calculated earlier.

If the analytical representation of g(x) is plotted by software, regardless of the precision of the calcu-

lation, the result is approximated based on a perfect analytical description of the intended value. For

example, the value of g(x = 4) is calculated by evaluating 4− 3 = 1. If we are interested in g(π) we have

to compromise and use an approximate form of π but at least the calculated is intended to be in�nitely

precise. In the scenario of the numerical calculation, this is not the case. Depending on the step-size of the

values for x called upon by the array index n, the precision of g(x) changes. In my earlier example, the

plot was constructed by taking all of the whole values of x between -10 and 10. If one were to calculate

the value of g(x = 4) the evaluation would be of the form:

g(x = 4) =
12.5− 15− 8 + 12

5− 4
=

1.5

1
= 1.5

This result is signi�cantly di�erent than the numerical evaluation of the analytical description of g(x).
And even more importantly, there are no values of g(x) for x-values that were not calculated before. The

value of g(x = π) is impossible to evaluate using a numerical solution. We could use some clever spline

or linear interpolation techniques to approximate the value of g(x = π) but clearly the numerical solution

is always less accurate.

Even more so, due to the �oating point format in computers, taking multiple derivatives over and over

again will eventually amplify the e�ects of rounding errors to a point where you just end up with noise.

It is clear that for as far as precision is important, �rst performing an analytical transformation after

which the result is numerically plotted is always the superior method.

So why bother with numerical software at all? There are multiple reasons.

1. Input data can be numerical in which case the analytical approach goes out the window altogether

2. Analytical solutions might not yet have been invented or even possible which forces us to use

numerical solutions,

3. computers are inherently numerical which makes computational numerical evaluations far superior

to analytical evaluations in some scenarios where an analytical input is known.

A song could be technically decomposed and constructed by one huge Taylor polynomial or Fourier series.

The computer could then apply the analytical transformation and calculate numerical values. However,

2 ANALYTICAL VS. NUMERICAL 5

a purely numerical transformation on the raw data is often much faster and the results are also accurate

enough.

In short, numerical calculations always involve operations on �nite sets of numbers whereas the analyt-

ical operation is performed on the mathematical expression. Although analytical operations are always

superior in precision, the numerical approach can be performed much faster as long as the numerical error

is su�ciently low.

3 THE MATLAB INTERFACE 6

3 TheMatlab interface

The Matlab interface is quite extensive but in practice, you only require to use a couple of buttons to

access most of its functionality. In the center of your screen you’ll �nd only the command line when you

�rst boot the program. Once you open a new script, part of that screen will become the script window.

On the right you will �nd your ’workspace’. The workspace is an overview of all of the local variables

stored in the memory. Those variables can be called upon in your script or in the command line (below).

On the left you’ll �nd the �le explorer where you can access all of the �les.

Matlab uses a ’working directory’. This means that it will in principle, only look for �les that are placed

in that folder. Every time you relaunch the software, it will reset the working directory to the folder set

in the settings. If you wish to change the working directory you can browse using the �le explorer and

double click the working directory of choice. However, if you reboot the software, it will reset its working

directory to the default. If you wish to change the default working directory, you have to change it in the

Matlab settings.

Figure 2: The Matlab screen with the most commonly used features highlighted.

3 THE MATLAB INTERFACE 7

Matlab in principle parses commands that tell it to do something with numbers. Single commands

can be executed using the command line. However, just like in most situations, its more e�cient to write

scripts that are executed in their entirety. Only for very small tests or operations would using the com-

mand line ever be more e�cient. In almost all other situation simply making a script and using that is the

way to go.

The Matlab syntax is very similar to syntaxes used in other programming languages. Besides that, Mat-

lab has many short hand notations that are extremely common in mathematics which helps to decrease

the size of your document. These shorthand notations might be a little rough to get into at �rst but once

you get into it, you are glad they are available. In this chapter we will cover some of the most common

Matlab syntax necessary for basis instructions.

Simple arithmetic Matlab understands most basis operations which can be executed in the command

line. Consider the following:

1 5+4
2 2^5
3 3*sqrt(5-3)
4 3*log10(3.3)

Executing this piece of code, or even one line of it for that matter, will return a large mess of results in

your command line. For example, the last line prints the following result in the command line:

>> 3*log10(3.3)

ans =

1.5555

In Matlab the semicolon ; is used to stop Matlab from printing a line. Besides that, it will also pop up

when de�ning row breaks in matrices but that will come up later.

It is important to use semicolons because printing every step and every matrix in the command line is

incredibly CPU intensive and drastically slows down the computer. It is also very messy, so only leave out

semicolons when you want the software to print the result in the command line! Results can also easily

be stored in variables that you can name using letters, capitals and numbers:

1 a = 5+4;
2 b = 2^5;
3 C3 = 3*sqrt(5-3);
4 varTwo2 = 3*log10(3.3);

Vectors and Matrices It is very common to use vectors or ’arrays’ in Matlab (Matlab doesn’t see the

di�erence so I will continue with the word ’vector’). While we think of the input of for example f(x) as

a scalar, you want Matlab to calculate it for a set of x-values. For that reason, Matlab has a shorthand

notation for element-wise operations.

First lets look at how to create vector in Matlab. The easiest way to create a vector is by putting the

desired numbers between square brackets.

3 THE MATLAB INTERFACE 8

1 A = [3 5 3 1 44];

In situations where you want to create a vector with consecutive numbers separated by whole integers,

you can use the colon to indicate the range. In principle, the square brackets are no longer necessary but

personally, I like to use them for readability. The following lines have the same result:

1 A = [1:10];
2 A = 1:10;

The start and end points could be any value as long as they are in ascending order. Matlab will simply

put steps of exactly 1 in between the numbers until the end is reached. If you want to use smaller steps,

you can specify the step size sandwiched in between the start and end point using the colon:

1 A = -10:0.1:10;

Another handy function you might use many times is the linspace function which, instead of the step

size, calculates the step size based on the number of elements you want your array to contain.

1 A = linspace(-10,10,1000);

This line creates a vector with a 1000 numbers ranging between -10 to 10 with equal step sizes.

Rows and columns can be interchanged using the ’-symbol. This is similar to taking the conjugate. For

example:

1 A = [1:10];
2 B = A';
3 C = [1:0.2:20]';

B is a �ipped version of A whereas C is created in that orientation directly.

Matrices are constructed by using the semicolon as row separator. For example:

1 A = [1 2 3; 4 5 6; 7 8 9];

This line creates a 3x3 matrix with the numbers from 1 to 9 in reading direction.

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

3 THE MATLAB INTERFACE 9

4 5 6
7 8 9

Vectors and matrices �lled with zeros or ones can also be quickly de�ned using the ones and zeros
command:

1 A = zeros(3,5);
2 B = ones(2,10);

Vector and matrix arithmetic How to multiply two 1x5 vectors? In math we know the dot and cross

products (both have an implementation in Matlab of course) but often you just want a function to be

applied on every entry in the vector. Multiply index 1 with 1 etc. In Matlab you can use the . symbol

before the *,/ and ˆ if you wish to perform an element-wise operation on that vector. Assume we have

two vectors, A and B. A has the integer ranging 1 to 5 and B has the integers ranging 3 to 7. If you want

to multiply the �rst number of A with the �rst number of B etc, that would look something like this:

1 A = [1 2 3 4 5];
2 B = [3 4 5 6 7];
3 A.*B

This results in the following output:

ans =

3 8 15 24 35

3.1 Accessing matrix elements

While using Matlab you will quickly notice accessing speci�c matrix or vector elements is often the ac-

tion of choice. Luckily, Matlab has developed a compiler that can very intuitively and quickly allow you

to do exactly that without the need of complicated loops or expressions.

In principle, the designated element you wish to access will be speci�ed as an argument between paren-

thesis. For example, consider the following one dimensional vector:

A = [0:100];

Vector or matrix indexing happens from 1 to the end. In other words, the �rst element in a vector is

element number 1. If I were to access the �fth vector element of my vector A, I were to type the following

line:

>> A(5)

ans =

3 THE MATLAB INTERFACE 10

4

That returns 4 because we started counting at 0. In any case, lets say we want to access all the elements

from the indices 5 to 10. This is simply done by creating a vector in the argument containing all of the

indices we wish to access, so in this case:

>> A(5:10)

ans =

4 5 6 7 8 9

Doing it the other way around is of course no problem as well:

>> A(10:-1:5)

ans =

9 8 7 6 5 4

Important for accessing array elements is the knowledge that end always assumes the value of the highest

index value. So all of the elements except the �rst 2 could be called as following:

A(3 :end);

All of the elements can be accessed by simply using only the colon:

A(:);

If I have a 100x100 matrix and I want to access all the elements of the �rst �ve rows, we could do the

following:

A(1:5,:)

Notice that in this case, the ’dimension’ separator (the symbol used to specify we are now going to index

a di�erent dimension of the matrix) is the comma symbol. Accessing the element in row 2 and column 3

is done as following:

A(2,3);

Row and column values can also be generated by commands based on logic. For examples, the find
command returns the row and column numbers where certain conditions are true. If we want to access

only all of the elements above 25 for example, we could do this:

3 THE MATLAB INTERFACE 11

A = 0:100;
A(find(A>25));

However, if the output of the find function is directly used as argument for the matrix indices, we can

leave that out and simply put an expression in between the parentheses:

A = 0:100;
A(A>25)

Lets say we want to create a matrix of 5x5 in size that contains random numbers between 0 and 100. If we

want to store the row and column values in in a row and column vector of elements that are higher than

80, we have to do the following:

A = 100*rand(5,5);
[row,col] = find(A>80)

This will return the following in the command line (notice the lack of a semi colon at the last line of code):

row =

4
1

col =

3
4

Your computer might give di�erent results of course because rand generates random numbers. In this

case, my matrix looks like this:

>> A

A =

42.2886 69.9888 53.0864 96.8649 77.8802
9.4229 63.8531 65.4446 53.1334 42.3453

59.8524 3.3604 40.7619 32.5146 9.0823
47.0924 6.8806 81.9981 10.5629 26.6471
69.5949 31.9600 71.8359 61.0959 15.3657

You can check and see that the results are indeed right.

1xN vs Nx1 One dimensional vectors can either be horizontal or vertical. In both cases, accessing array

values can be done by putting the index or indices between parentheses. Whether it is a horizontal or

vertical matrix does not matter. However, in vector multiplication or for some functions, the dimensions

3 THE MATLAB INTERFACE 12

have to match, which means that your vector might be oriented the wrong way. As mentioned before,

this can simply be �xed by putting a apostrophe behind the vector.

Naming variables There are very few rules for naming variables. You can do almost everything but

be careful! Never name a variable after your script! Matlab will simply output the content of the

variable name instead of executing the script. Also, best practice is to use camelCase. This basically means

that the �rst letter is lower case and every �rst letter of a new word is upper case. Locally you can a�ord to

use very small names for variables but in order to keep your code to be comprehensive, it is advised to use

clear and self-evident variable names. If you want to speed up this process, you can replace all of names of

variables quickly in your code by renaming one of them and then pressing shift+enter. Also, don’t name

variables after existing functions. Variable names like ’max’ and ’min’ are very obvious candidates here.

4 EFFICIENT SCRIPTING 13

4 E�cient scripting

Since most of your Matlab time will be spend writing scripts, it is very good to know all the tips and

tricks to program as e�ciently as possible.

Don’t hard-code too much! Hard-coding is the practice of putting all of the information directly into

functions. Often, using dynamic coding is much more e�cient and robust. Take the following piece of

code that calculates and plots the function:

f(x) = 0.5 ·
√
x

1 x = [-10;0.01;10];
2 y = 0.5*sqrt(x);
3 plot(x,y);

This code will work �ne! Try it out for yourself. Now lets say we want do a similar calculation but for

half of the window size:

1 x = [-10;0.01;10];
2 y = 0.5*sqrt(x);
3 plot(x,y);
4

5 x2 = [-5:0.01:5];
6 y2 = 0.5*sqrt(x2);

If we then decide to decrease or increase the step size, we have to change the code everywhere. This could

have been done much more e�ciently! Take a look at the following code:

1 xmin = -10;
2 xmax = 10;
3 xstep = 0.01;
4

5 x = [xmin,xstep,xmax];
6 y = 0.5*sqrt(x);
7

8 x2 = [0.5*xmin,xstep,0.5*xmax];
9 y2 = 0.5*sqrt(x2);

10

11 plot(x,y);

The di�erence is of course that the start and end points etc are now dynamically stored in variables that

are used to construct the x and y vectors. If you wish to change the step size you only have to alter xstep

which will then automatically solve all of your problems.

Maybe you noticed that there are much more e�cient ways to write the code before but you get the

point. More dynamic coding makes it much easier to debug your code and also change parameters if your

code is not doing what you intended it to do.

4 EFFICIENT SCRIPTING 14

Comments and code sections Just like most programming languages, Matlab has a comment symbol

used to write comments in your code that help you to memorize what lines are used for:

1 % Create a vector of x values
2 x = [-10,0.01,10]; %this works
3 y = x.^2; %take the squared value

Writing comments is extremely useful if you have to revisit your project later on or if other people are

also going to use your code.

Matlab also has a speci�c interpretation for the double percent symbol. This creates a new code section.

Normally, the ’Run’ button runs the whole script but Matlab also has a ’Run Section’ button that allows

you to run the section of code separated by double percent symbols. This is extremely useful if part of

your script is used to ’prepare’ your data whereas the other part is used to execute calculations. Data, is

stored in the ’workspace’ of Matlab which is essentially the memory where variables are stored in. That

data is not lost if the script is �nished executing. If you don’t wish to execute all of that �rst code, it might

be helpful to split your script in sub sections.

1 x = load('data.mat');
2

3 %%
4 y = x.^2;
5 plot(x,y);

Matlab will highlight the section your cursor is in which will show you which part will be executed if

you press the ’Run Section’ button.

Functions Like most programming languages, Matlab also has function support. Functions can be

accessed under the following conditions:

1. If the function is declared in your script

2. If there exists a Matlab-�le with the name of your function that only contains 1 function

Functions look something like this:

1 function [output1, output2] = nameFunction(input1, input2)
2 output1 = input1 + 3;
3 output2 = input2 - 5;
4 end

The function starts with a vector that contains the names of all the variables it will return. If the function

does not return a value, you can use the symbol ˜ instead of an output argument. If you do not need to

use input arguments, you can leave them out. Do not forget to use brackets though!

Writing your own functions can be incredibly useful when certain operations are executed repeatedly.

Especially if these operations consists of multiple lines of code. Sometimes, putting those functions in the

�le is not something you wish to do. In that case you can put them in a new script. If you have many

small functions that you do not wish to pollute your Matlab folder with, it is possible to declare multiple

4 EFFICIENT SCRIPTING 15

functions in a class that can be accessed from your code. A class with only functions can be designed as

following:

1 classdef className
2 methods(Static)
3 function [output] = function1(input)
4 % some code
5 end
6

7 function [output] = function2(input)
8 % some other code
9 end

10 end
11 end

The functions can be accessed from a di�erent script as following:

1 % a different script
2 x = 1:10;
3 y = className.function1(x);

In this case, the data in xwill be passed on and stored in a local variable called input in the function1
scope. There the code will do something with input and eventually put some data in the variable output.

After theend command is reached. The scope will be terminated and the linenameclass.function(x)
will be replaced by that data. Please be aware that the �le names of functions or classes must be the same

and carry the .m extension. So in this case that would be nameFunction.m and className.m.

Within a static class, the usage of functions that are also de�ned in that class do need the class name

pre�x. So if function2 needs function1, You would have to type className.function1(x)
even though the function is declared in that same �le.

5 IF AND FOR 16

5 If and for

Just like in a lot of programming languages, Matlab also has its own logical expressions. The syntax

however might be a bit di�erent from what you expected. For the if statement, take the following example

as your guideline.

1 x = rand;
2 if (x>0.5)
3 y = 3;
4 else if (x<0.1)||(x==0.05)
5 y = 1;
6 else if ~(x==0.02)
7 y = 2;
8 end

Always try to put logical expressions between parentheses. The not operator which is often written with

the exclamation mark in Matlab is coded with the ˜. The logical and is done with && and the logical or

is done with the ||. Please notice how the is equal is done with a double ==. Equation content besides of

numbers require special functions such as strcmp() and isequal().

5.1 The for-loop, when to use

Matlab’s for loop implementation is very useful but I advice new users to think twice before using one.

This is for a couple of reasons. For one, a lot of ’bulk’ operations that are often intuitively done with a

for-loop are already implemented with special functions which you can look up on the internet. Secondly,

it is also often possible that the same goal can be reached using element-wise operations. Lets take a

matrix with x-values and y-values. We then like to create two dx and dy vectors that contain the x and y

coordinates of the derivative of that function that we calculate numerically. You might wonder why we

need to create a new dx-vector if you already have an x-vector with coordinates. The reason is simple.

The dy values will contain one less value because you need two y-values to create one dy-value. If you

want to plot this derivative function, you need an x-vector with one less element because the dimensions

need to be the same so its easy to just create a new dx vector immediately. Consider the following script

that contains several implementations that do the exact same operation:

1 % Declaring the starting point
2 x = [-10:0.01:10];
3 y = x.^2;
4 % Method one, the for loop
5 dx = x(1 :end-1);
6 dy = zeros(length(y)-1,1);
7 for i=1:length(x)-1
8 dy(i) = (y(i+1)-y(i))/(x(i+1)-x(i));
9 end

10 % Method two, element wise
11 dx = x(1 :end-1);
12 dy = (y(2 :end)-y(1 :end-1))./(x(2 :end)-dx);
13 % Method three, the shortest way
14 dx = x(1 :end);
15 dy = diff(y)./diff(x);

5 IF AND FOR 17

The �rst bit of code scans through the x and y-values and calculates the di�erent derivatives sequentially.

The second method simply creates two vectors where one is shifted once, then it divides the two element-

wise. The last method simply uses the build in diff function that quickly generates di�erence vectors.

The moral story of this is that for loops are useful but often not necessary. Many functions already exist

and the option to do element-wise operations could greatly optimize your code.

6 PLOTS AND SUBPLOTS 18

6 Plots and subplots

Matlab support a great many selection of di�erent plot style. All of them are nicely documented online

and in the help �le. Some common styles of plotting will be discussed to get you started.

Basic lines The most basic form of plotting can be simply done using the plot command. The plot

command can optionally be handed a special x-vector that contains the x-values where the y-values belong

to. If no x-vector is speci�ed however, the index number of the y-value is used instead. Matrices can also

be handed as arguments for the plot function as long as the dimensions match. This allows you to put

multiple lines in the same �gure. Take the following example for plotting a simple function.

1 x = [-10:0.01:10];
2 y = x.^2;
3 plot(x,y);

An extra function can be plotted in the same �gure in two ways:

1 x = [-10:0.01:10];
2 y1 = x.^2;
3 y2 = sin(x);
4

5 % Method 1
6 clf; % Clear any previous figure
7 hold on; % Hold figure content
8 plot(x,y1);
9 plot(x,y2);

10 hold off;
11

12 % Method 2
13 y = [y1;y2]; % Put the y1 and y2 vector in different rows
14 plot(x,y);

If one wishes to generate two separate graphs in the same �gure, use the following syntax:

1 x = [-10:0.01:10];
2 y1 = x.^2;
3 y2 = sin(x);
4

5 subplot(2,1,1);
6 plot(x,y1);
7 subplot(2,1,2);
8 plot(x,y2);

The subplot(nRows,nCols,number) speci�es where to put the plot. nRows speci�es how many

rows and respectively columns are generated. The number parameter speci�es, in reading order, which

location should be �lled with the plot command following. All of the plot settings such as the color,

linestyle etc will all be applied to only that plot.

6 PLOTS AND SUBPLOTS 19

6.1 Plot properties

Matlab allows you to change many settings of a plot. I could elaborate on all of these settings but the

easiest way is to simply look it up on Google by querying for example: How to change line color
in MATLAB

7 CELLS, STRUCTS AND ARRAYS 20

7 Cells, Structs and Arrays

One might encounter plenty of situations where you want to store di�erent data sets with similar content

in a matrix for example. Lets start with a simple example. A piece of code throws 200 series of dice. In

series one, the computer throws until he hits a 6. The series of numbers thrown in stored in an array.

Then the goes for the second series and again, throws until he hits a six. The length of these arrays is of

varying length and so simply putting them in a matrix is either impossible or incredibly ugly (for example

if you �ll the empty array items with zeros for all the series shorter than the longest one.

For exactly this scenario, Matlab supports the cell format. The cell format can be considered a con-

tainer for other data types. In essence you are creating a vector or array or multidimensional array that,

in each element can contain a matrix or cell in and of itself. The data in a cell can by of varying length

since a cell is closer related to a data ’pointer’ than an actual space in your memory. However, using cells

still has the bene�ts of being accessed with index values.

Cells require their own syntax that might take a little time to get used to. Lets start by recalling how

we create a 2-by-4 matrix with some random numbers of our choice:

1 M = [1 5 3 5; 3 4 9 9];

Calling speci�c index values is fairly simple. Take the following examples for: �nding element (4,2), all

the elements in column 1 and all the elements in row 1.

M(4,2);
M(:,1);
M(1,:);

For cells, this is quite di�erent. Mind that because cells behave somewhat like a data container, there is

a di�erence between calling upon the element in the cell, or the data in the cell. So lets say we have a

simple cell called ’C’ with an array in there with the numbers 1 to 4. If we type the following command

in the command line, we might not get what we expect:

>> C(1)

ans =

[1x4 double]

What is going on here? Well, we put a [1x4 double] in cell(1). Therefor, Matlab returns: A [1x4 double].

We are not really returning the content of cell(1), we are returning the package of that array. Accessing

cell elements in Matlab can be done by using braces instead of parentheses:

>> C{1}

ans =

1 2 3 4

7 CELLS, STRUCTS AND ARRAYS 21

So how do we create these amazing cells? Simple! Lets start by creating a completely empty small zero-

dimensional cell:

C = {};

Okay, that was too easy. Now lets make a 2-by-2 cell:

C = cell(2,2);

And what if we want to create a cell with some data? For example, the matrix above?

C = {M};
% or simply
C = {[1 5 3 5; 3 4 9 9]};

Simple enough right? That’s right! It is. Now lets look at structures.

7.1 Structs

Structs in Matlab are in many ways very comparable to cells but they behave more as a database with

entries. Structs are in Matlab referred to as struct arrays but we will refer to them as structs. Structs

have ’�elds’ contain data entries but each of these �elds have names and can be accessed by their name.

Here is an example from the Matlab website:

1 patient(1).name = 'John Doe';
2 patient(1).billing = 127.00;
3 patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];
4

5 patient(2).name = 'Ann Lane';
6 patient(2).billing = 28.50;
7 patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

One can now request to either access entries by means of the number. So all the information of patient 1

can be called by doing the following:

>> patient(1)

ans =

name: 'John Doe'
billing: 127

test: [3x3 double]

Or we can request all the names:

>> patient.name

7 CELLS, STRUCTS AND ARRAYS 22

ans =

John Doe

ans =

Ann Lane

Or we can request speci�c ranges of entries in the struct:

>> patient(1).test(1:2,1:2)

ans =

79 75
180 178

Structs are used when storing and loading Matlab data. Matlab �les, ’.mat’ �les, when loaded are ef-

fectively structs or even nested structs (structs in structs a.k.a. structception). If one saves variables to a

Matlab �le, loading returns a struct with the variable data in a �eld with the name of the original variable.

Lets consider the following scenario. First we store some numbers in a variable. We then want to save

that variable to a .mat �le with some �le name. This will be done as following:

f = [1 5 3 1];
save = ('filename.mat','-mat','data');

Matlab will now put the data of f in a struct with �eld name ’f’ and save that in a .mat �le. Lets load it

into whatever it will be called A:

A = load('filename.mat','-mat');

What is A now? A is a struct with one �eld called ’f’. So the data that we stored can now be recalled by

doing the following:

>> A.f

ans =

1 5 3 1

If the name of the �eld which we wish to access is stored in a variable, this could also be combined as

following:

>> field = 'f';

7 CELLS, STRUCTS AND ARRAYS 23

>> A.(field)

ans =

1 5 3 1

8 ARRAYFUN (MORE USEFUL THAN FUN) 24

8 Arrayfun (more useful than fun)

It is not very uncommon that one wishes to apply a certain ’function’ on every element inside an array,

be it multidimensional. It is tempting to scroll through the array with a for-loop and then �ll a new array

with the results element by element but it is not surprising that such methods will be extremely slow.

Matlab already has a syntax prepared for you that will solve this problem and it is a rather easy one.

Presume a self made function as following:

function result = testfunction(input)
result = (input + 2) * 5;

end

Let us now create a simple 3x3 array with some numbers:

C = magic(3);

If we want to now apply this function to every array element, we use the following syntax:

>> D = arrayfun(@testfunction,C)

D =

50 15 40
25 35 45
30 55 20

As speci�ed by the documentation rather annoyingly and vaguely, all the arguments besides the function

argument (that �rst one with @ and then the name of the function) should be given after the �rst argument.

So lets say we create a function that does something Matlab can already do:

1 function result = tothepower(A,B)
2 result = A^B;
3 end

And we want to apply this to two matrices of 3 by 3 where we apply each element to each element

(element-wise operation but now with our own function). That would simply look as following:

>> matrix1 = magic(3);
>> matrix2 = magic(3)+1;
>> answer = arrayfun(@tothepower,matrix1,matrix2)

answer =

1.0e+09 *

0.1342 0.0000 0.0003
0.0000 0.0000 0.0058

8 ARRAYFUN (MORE USEFUL THAN FUN) 25

0.0000 3.4868 0.0000

Unsurprisingly with huge numbers as a result. Regardless of that fact, this function works. At this point

it shouldn’t be surprising that there is also a thing called cellfun and structfun which would have similar

implementations. Experiment with this on your own!

8.1 Anonymous functions

In Matlab it is also possible to create so called ’anonymous functions’. What are they exactly? They are

basically a form of data, read datatype, similar to doubles, �oats and structs. They are able to take one

argument and one argument only and they will provide answers. Take the following example that creates

an anonymous function that squares a number:

>> sqr = @(x) x.^2;
>> sqr(4)

ans =

16

One might wonder why we should bother about anonymous functions. For one, they allow you to quickly

create small new functions that might decrease the size of your code and make it more insightful. Also,

they can easily be implemented in arrayfun-functions. Take the following as an example:

D = arrayfun(@(x) x.^2,A);

This line basically squares all the numbers of array A and puts it in D. This is of course a very ine�ective

notation but you can imagine how the same syntax can make many operations much more e�cient.

9 DEBUGGING 26

9 Debugging

Matlab has a very useful special feature for debugging. Any line in your code can be selected for debug-

ging. By clicking slightly on the right of the line number on the left of your code line in the editor, you will

select that line to be stopped at during the running of your script. Such a point is called a breakpoint.

A small red circle will appear before that line. When you run your script, Matlab will stop at that line,

not execute it and allow you to look at what is going on inside the process. Notice that now, in your

command window, every line starts with: k». You might notice that your workspace has changed. While

Figure 3: The debug point appearance in your Matlabwindow

debugging, the workspace will contain all of the data that the code is working with during the execution

of your script. If, for example, you have a breakpoint inside a function that is called by a script, your

workspace will ’only’ contain the variables that are within the scope of your function. That means: only

the variables that are used in that function.

Using the debug option is extremely useful in debugging your code because it allows you to locate exactly

at what step your programming error occurs. Notice that besides normal break points, there are also con-

ditional break points that allow you to stop only when, for example, the counter of a for-loop assumes

a certain value.

10 EXERCISES 27

10 Exercises

You can pick any of the following exercises to practice your Matlab skills.

10.1 Basic

Exercise 1. [Plotting] Create a piece of code that generates a �gure of the function

f(x) =
1

2
x2 − 4x+ 5

The line has to be black. In a subplot, also show the derivative in red. Then add another subplot with both

graphs, the original function in black and the derivative in red and striped. Experiment with axis labels

as well.

Exercise 2. [Statistics] Create a piece of code that calculates the odds of throwing a speci�c combina-

tion of two dice. Start with the following code:

1 die1 = 4;
2 die2 = 6;
3

4 % your code here
5

6 prob = ... % your calculation

Of course the numbers for the dice should interchangeable. For more di�culty, add extra dice.

Exercise 3. [Signal Processing] Open a sound �le in Matlab and make a plot of the discrete time

Fourier transform.

Exercise 4. [Mathematics] Write a piece of code that generates n terms of the Fibonacci sequence.

10.2 Moderate

Exercise 5. [Signal Processing] Create a low-pass �lter an apply that to a song. Play the song to test

if it works. Alternatively use cyclic convolution with zero-padding to do the equivalent with an impulse

response.

Exercise 6. [Image Processing] Make a script that e�ciently turns an image into black and white. Af-

ter that, create a function that is able to �lter high frequency information and accentuate that information

on the original image.

Exercise 7. [Mathematics] Create the image of a vector �eld that rotates around the origin.

Exercise 8. [Image Processing] Download the image of a height map and transfer the information to

a 3D height map. Use functions such as surf() or mesh() for this purpose.

Exercise 9. [Mathematics] Write a program that generates an n-term Taylor polynomial of a random

dataset in point x. If possible, add a graphical user interface. As another option, you might implement it

as a function that accepts the dataset and desired order of the polynomial as arguments and returns the

polynomial coe�cients.

10 EXERCISES 28

Exercise 10. [Signal Processing] Write a piece of code that applies an impulse response to an audio-

sample. Try design an impulse response that resembles echo or reverb.

Exercise 11. [Machine Learning] Write a function that calculates the values of the output neurons

based on the input neuron’s activation values, weighing matrix and then apply the sigmoid function.

10.3 Advanced

Exercise 12. [Machine Learning] Create a neural network that learns to perform an XOR operation

and train it either by means of a genetic algorithm or back propagation.

Exercise 13. [Signal Processing] Implement a robust tempo �nder for music �les.

Exercise 14. [Arti�cial Intelligence] Build a ’mastermind’ computer AI that can play the well known

mastermind game. Try to design it so that the average number of guesses needed for a 4 number code of

6 di�erent numbers is below 5. For more information Google the ’board game’ called ’Mastermind’.

Index

Anonymous functions, 25

arithmetic, 7

array, 20

Arrayfun, 24

cell, 20

Cellfun, 24

class, 14

classes, 14

command line, 7

commenting, 14

comments, 14

conditional access, 11

element-wise, 7, 9

for-loop, 16

function(s), 14

hard-coding, 13

if-statement, 16

linspace, 8

logic

and, 16

not, 16

or, 16

matrix, 7

access, 9

column, 10

row, 10

�nd, 11

ones, 9

plot, 18

properties, 19

printing, 7

section, 14

semicolon, 7

static methods, 14

struct, 20

struct, 21

Structfun, 24

subplot, 18

syntax, 7

vector, 7

access, 9

conjugate, 8

�ip, 8

series, 8

working directory, 6

workspace, 6

zeros, 9

29

